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SUMMARY.
In this paper we present a new approach to the kinematic and dynamic analysis of rigid body systems in the form of a consistent
method employing 4×4 matrices. This method can be considered a powerful extension of the well known method of homogeneous
transformations proposed by Denavit and Hartenberg. New matrices are introduced to describe the velocity and the acceleration,
the momentum, the inertia of bodies and the actions (forces and torques) applied to them. Each matrix contains both the angular
and the linear terms and so the "usual" kinematic and dynamic relations can be rewritten, halving the number of equations. The
resulting notation and expressions are simple, and very suitable for computer applications. A useful tensor interpretation of this
method is also explained, and some connections of this notation with the screw theory and dual-quantities are quoted.

1 - INTRODUCTION.
The research in many fields like robotics and biomechanics
has stimulated the development of 3D kinematics and
dynamics and many papers on this subject have been
published in the last decade; however they tend to be either
specific to a certain application or they consider only a
limited part of the problem.
The works that deal with this question in depth appear non-
homogenous in the mathematical approach to the various
steps of the kinematic and dynamic problems, whether direct
or inverse. As an example, many authors use the well known
homogenous matrix notation [18] to define the position of
bodies and points, but for velocity, acceleration and dynamic
analysis they use different approaches such as vectors [19,
23, 27, 28], tensors [8], screw-theory [5, 6, 26, 38], dual
numbers [7, 15, 22, 46] or mixed notation; other authors
(e.g. [28]) use 6x6 matrices.
The tensor approach results in compact forms but requires
deep mathematical bases. Screw theory allows simple
geometrical interpretations, but it is restricted to speed and
infinitesimal displacement analysis. Dual numbers are often
used only as mathematical supports for the screw theory.
Even though these different  methods are sometimes
translated into matrix notation, they remain non-
homogeneous with the approach used in position analysis:
for example, for both the velocities and accelerations of the
bodies, the rotational and linear components are treated
separately [3, 4, 16, 27, 42, 48, 49].
Particular attention must be paid to the interesting work by
Uicker [17, 41, 43, 44]. He proposes the adoption of some
4x4 matrices obtained by deriving the homogeneous
transformation matrices with respect to time. Unfortunately,
the resulting matrices do not contain the information in a
user-friendly way. For example the angular velocities are
represented by the time derivative of direction cosines. This
approach is good for automatic linkages analysis but is not a
clear way to describe some familiar concepts like "velocities
composition" or Coriolis' theorem.

Although each of the quoted methods can be very convenient
in individual cases, we felt the necessity to develop a
"unified" methodology which could be conveniently utilised
in many different situations.
According to this methodology the pose1 of a rigid body can
be represented by a 4×4 matrix [18] that we will indicate by
M. This matrix contains a 3×3 submatrix R describing the
orientation of the body and a 3×1 vector T representing the
position.
To develop a full kinematic analysis of systems of rigid
bodies according to our notation two new 4×4 matrices must
be defined: W which describes the linear and the angular
velocity of the body, and H which contains both the linear
and the angular acceleration. Other matrices can be utilised
to describe finite and infinitesimal displacements or other
entities like the Instantaneous Screw Axis (ISA).
Finally three new matrices (ΓΓ , ΦΦ , J) are used in dynamics;
they contain respectively: the linear and the angular
momentum of the body, the actions (forces and torques)
applied to the body and the mass distribution (mass, center
of mass position, inertia tensor) of the body.
As described in later paragraphs, this notation has some
useful properties: the presented matrices can be combined
quite easily to write the "normal" kinematic and the dynamic
relations handling both linear and angular terms at the same
time. Moreover (see paragraph 3.3) it is quite easy to
describe the relative motion between three or more bodies
using familiar concepts like velocity composition or
Coriolis' theorem.

Finally the present approach is quite convenient for
computer applications and two standard libraries are
available to help writing numerical simulation programs [21,
24].

                                                       
1Pose: a term meaning position and orientation
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The matrices introduced above can be seen as Cartesian
components of tensors in the current reference frame. From
the tensor interpretation the kinematic and dynamic relations
may be obtained far from any reference frame.

The methodology has been developed in different steps since
1984 when Legnani showed how to represent efficiently, by
means of two matrices W and H, the velocity and the
acceleration of a rigid body [30, 31, 32]; subsequent papers
[10, 11, 29] extended this approach to the whole dynamic
analysis of systems of rigid bodies using the Newton-Euler
approach.
The aim of this paper is to reorder the whole method and to
extend it to the Lagrangian dynamics.

It is important to say that our general approach comprises
and generalizes other kinematic methods proposed for the
solution of individual problems by some authors (e.g. [36,
39, 40, 45]) so a few details of this methodology can be
found in other notations (e.g. matrix J is used also in [40,
14]) but many parts are totally original (e.g. matrices ΓΓ
and ΦΦ) and most important the whole methodology has
never been presented as a "unified" and "generalized"
approach for spatial kinematics and dynamics.

In the following paragraphs we assume a basic knowledge of
the concepts of homogeneous transformations; however
some of their fundamental characteristics will be quickly
recalled in paragraph 2 in order to better present our
notation.

2 - POSITION MATRICES AND
ROTOTRANSLATION

2.1 Notation and nomenclature
Given a vector v

r
, its projections onto a chosen reference

frame (k) may be collected in a vector matrix v( )k  or in a

3x3 "skew-symmetric" matrix v( )k  (indicated by means of

an underscore), therefore both matrices represent the same
vector in (k)2.

v v( ) ( )k

x

y

z

k

z y

z x

y x

v

v

v

v v

v v

v v

= =
−

−
−

0

0

0

 .

Using "underlined matrices" the vectorial expression

cba
rrr

×=  can be expressed in frame k as follows:

a b c( ) ( ) ( )k k k=

or:
a b c c b b c c b( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k k

t
k k

t= − = − +  .

If we consider two different frames (i) and (j), the
representations v( )i  and v( )j  of the same vector v

r
 in (i)

                                                       
2When a matrix is a Cartesian representation  of a vector or
of a tensor in a frame k, we add the subscript (k) to the
matrix. The symbol (k) is also used as a shorthand of k-th
reference frame or body.  A "global", an "absolute" or an
inertial reference frame will often be indicated as (0).
The subscript (k), in trivial cases, is sometimes omitted.

and (j) are correlated by the well known rotation matrix
Ri , j .

If vector v
r

 is represented by a vector matrix v the change
of reference formula is:

v v( ) ( )i i , j j= R .

While if vector v
r

 is represented by the "underlined matrix"
v  the previous relation becomes:

v v( ) , ( ) ,i i j j i j
t= R R  .

For any vector v and for any unit vector u it yields:

v v u un n= = −+0 2        for any n=1,2,...

2.2 Position Matrices
Given any point P of a rigid body the relation between its

homogeneous coordinate P0 0 0 0= x y z w
t
 in an

absolute reference frame (0) and its coordinate

P1 1 1= x y z wl
t
 in a local, body-fixed reference

frame (1), is described by the homogeneous transformation
P P0 1= M0,1  . (1)

The homogeneous coordinate w is null for points at infinity,
and has generally the value of 1 for other points.

figure [1] change of reference.

Therefore, the pose of the body with respect to the absolute
reference frame can be represented by the 4x4 "Position
matrix" M0,1 .

M
t

0,1
0,1 0,1

x x x x

y y y y

z z z z

x x x x

y y y y

z z z z

x y z t

x y z t

x y z t

x y z t

x y z t

x y z t

= = =

=

R

0 0 0 1 0 0 0 1

0 0 0 1

,

where the 3x1 vector t0,1  is the position of the origin of (1) in

(0), while the 3x3 submatrix R0,1 is the usual orthogonal

rotation matrix describing the orientation (attitude) of frame
(1) with respect to (0). Matrix M is often called the
"Transformation matrix" or "Denavit and Hartenberg matrix".
It is possible to verify that the first three columns of matrix
M0,1  contain the homogeneous coordinates in (0) of the three

points at infinity of the axes of frame (1) while the last
column contains the homogeneous coordinates in (0) of the
origin of frame (1).
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It is well known that the inversion of a position matrix is
always possible and very simple; considering equation (1), it

is obvious that M0 ,1
−1

 is the position matrix that describes the

location of frame (0) with respect to (1), therefore:

M M
t

0,1 1,0
1,0 1 0− = =1

0 0 0 1

R ,

 ;

the relations between R and t of M0,1 and M1,0 are:

R R R R1,0 0,1
t

0,1 1,0 0,1
t

0,1
1= = = −− t t  .

Given three frames (i), (j) and (k), position matrices M
combine as:

M M Mi k i j j k, , ,=  .

2.3 Rototranslation
The displacement of a frame which moves from an initial
position (1) to a final position (2) can be described in a
reference frame (0) by an appropriate rototranslation matrix
Q.
If P1 is the initial absolute position of a point embedded in
the moving frames, its final position P2  is:

P P2 1= Q  . (2)

t

figure [2] rototraslation.

To obtain matrix Q we apply Eq. (2) (valid for any point) to
the four columns of matrices M0 1,  and M0 2,  which describe

the initial and final position of the moving frame, hence:
M Q0 2 0 1, ,= Μ  , (3)

post-multiplying both sides of Eq. (3) by M0 1
1
,

−  we obtain:

Q M M M M= =−
0 2 0 1

1
0 2 1 0, , , ,  . (4)

Matrix Q depends on the initial and final positions of the
moving frame and on the choice of the reference frame (0).
Assuming k as a new reference frame, in which we intend to
describe the same screw-displacement, Eq. (4) becomes:

Q M M M M( ) , , , ,k k k k k= =−
2 1

1
2 1  . (5)

Remembering that:
M M Mk k, , ,2 0 0 2=

and
M M Mk k, , ,1 0 0 1=  ,

and introducing these relations in Eq. (5) we can rewrite it
as follows:

Q M Q M( ) , ( ) ,k k k
= −

0 0
1
0
 .

In other words the representations of the rototranslation in
two different reference frames are related to each other by
the relative position matrix of the two reference frames.
If matrix Q is expressed in frame (1) or (2) equation (5)
becomes very simple and it yields :

Q Q M( ) ( ) ,1 2 1 2= =  .

This last relation emphasizes the link between position
matrices M and matrices Q.
Since Q is the product of two position matrices it keeps the
following blocks:

Q
t

=
R

0 0 0 1
 ,

where R describes the rotation and t the translation of the
body; any rototranslation is equivalent to a screw motion.
Matrix R holds the unit vector of the screw axis and the
rotation angle as can be shown (see paragraph 5):

( ) ( )( )φφ cos1=
2

−++ uusinIR  ,

where I is a 3x3 identity matrix, u is a unit vector specifying
the direction of the screw-axis and φ is the rotation angle.
t holds the pitch p and a point paxof the screw axis:

( ) upt φpax +−= RI  .

t is the displacement of the pole which is the point
embedded on the moving frame that before the rototraslation
lay in the origin of (k).

3 - VELOCITIES AND ACCELERATIONS
MATRICES AND TENSORS

3.1 Basic definitions
To extend the transformation matrices approach to a full
kinematics analysis, two new matrices W and H must be
introduced.
The angular and linear velocity of a body with respect to a
reference frame can be represented by the velocity matrix3

W:

W v=

−
−

−
=

0
0

0
0 0 0 0 0 0 0 0

z y x

z x y

y x z

o

v
v
v

ω ω
ω ω
ω ω

ωω

 ,

where ωω  indicates the angular velocity of the body and v o

is the velocity of the point, considered belonging to the body
(called the pole) that in a considered instant is passing
through the origin of the reference frame.

The velocity P&  of a point P on the body can be obtained as:

100000

PP
P

P

P

o

P

P

P

z

y

x

z

y

x

v
W

ω
===

&

&

&

&  . (6)

It is easy to verify that this equation is a matrix formulation
of the usual vector formula:

)( OPop −×+= ωvv
rr  .

                                                       
3Matrix W contains, in a different form, the same
informations of the dual velocities defined in [1, 22].
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figure [3] Velocity and acceleration of a body

Similarly, the relative acceleration of a body with respect to
a reference frame may be indicated by the acceleration
matrix H, as:

0000

02 a
WWH

G
=+= &  ,

where the 3x3 submatrix G is given by: 2ωω += &G and a o

is the acceleration of the pole with respect to the reference
frame. It obviously yields:

( )tGG −=
2

1
ω&     ( )tGG +=

2

12ω

The acceleration P&&  of a point P of the body is:

100000

PP
P

P

P

o

P

P

P

z

y

x

z

y

x

aG
H ===

&&

&&

&&

&&  . (7)

Again, it is easy to verify that this equation is a matrix
formulation of the usual vector formula:

)O)P(()OP( −××+−×+= ωωω
rr&rrr

op aa  .

The first and second time-derivatives of the position matrix
M0,1 can be obtained by remembering that each column
represents the position of a point; for this reason, using
equations (6) and (7), one can easily write the following
relations:

.1
1,01,01,01,0

1
1,01,01,01,0

MMHMHM

MMWMWM

−

−

==

==

&&&&

&&

3.2 Change of reference
The value of the elements of matrix W depend on the frame
used as reference for two reasons. First of all ωω  and v o

must be represented by their components with respect to the
chosen reference frame. Secondly the pole is the point of the
body passing through the origin of the chosen reference
frame.
For these reasons, if another frame is chosen  matrix W
changes because the pole must be the origin of the new
reference and ωω  and v o  must be projected onto the axis of

the new reference. Matrix H behaves in the same way as W.
If we have two different reference frames (r) and (s) we will
indicate the representation of the velocity of a body in the
two frames as W( )r  and W( )s  and the acceleration as H ( )r

and H ( )s .

figure [4] Change of reference for velocities

Since the two matrices describe the velocity of the same
body in two different frames their values are strictly
dependent on each other. It is possible to prove (see
appendix A) that they are tensors which transform as:

W M W M( ) , ( ) ,r r s s r s= −1
(8)

H M H M( ) , ( ) ,r r s s r s= −1
 , (9)

where r s,M  is the position matrix of the reference frame (s)
with respect to (r).
In other words W( )r  and W( )s  are the Cartesian

representation  in (r) and in (s) of a tensor W. The same
statement applies to H.
The validity of the previous formulas can be proved by
expanding the matrices into their blocks and by executing
the matrix product. For example the velocity matrix in (r)
obtained by applying equation (8) is:

00000000

,,)(,

,,)(,)(
)(

sr
t

srrsr

sosr
t

srrsr
ror

r t
vv

W








−
==

RR

RRR

ω
ωω

where R Rr s s r s
t

, ( ) ,ωω  is equal to ωω ( )r , that is the angular

velocity of the body  in (r) and R r s Os, v  is the velocity of pole

Os  projected onto (r). Moreover it is easy to verify that the

velocity v
Or

 of the new pole is:

v v t
Or Osr s r r s= −R , ( ) ,ωω  .

This equation is just a matrix formulation of the following
vector formula:

)( sroo OO
sr

−×+= ω
rrr

vv  ,

where Or  and Os  are the origins of the frames (r) and (s),
respectively.

3.3 Relative kinematics
The relative motion between different bodies can easily be
studied by using the presented matrices.

figure [5] Motion composition
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Let us consider as an example three bodies i, j and k (or
three frames embedded in them). If the relative motion
between bodies i and j (W Hi j i j, , ) and between j and k

(W Hj k j k, , ) are known in any frame (r), using our

homogeneous method the absolute velocity and acceleration
(W Hi k i k, , ) of k can be simply written as:

W W Wi k r i j r j k r, ( ) , ( ) , ( )= + (10)

H H H W Wi k r i j r j k r i j r j k r, ( ) , ( ) , ( ) , ( ) , ( )= + + 2  . (11)

It is easy to interpret the meaning of each addendum of the
two formulas as drag, relative and (for the acceleration)
Coriolis components.
The proof of Eq. (10) is presented in the appendix A for the
case r = i. After having proved the validity of Eq.s (10, 11)
in (i), it's easy to extend it in any reference frame by
applying the change of base formulas (8, 9) on both sides of
Eq.s (10, 11).
Remembering that matrices W and H are Cartesian
representations of tensors, Eq.s (10 and 11) obviously hold
in any reference frame and we can simply write:

W W Wi k i j j k, , ,= + (12)

H H H W Wi k i j j k i j j k, , , , ,= + + 2  . (13)

4 - DYNAMICS.
The three new matrices introduced to develop the dynamic
analysis of a system of rigid bodies are: the action matrix ΦΦ,
the momentum matrix ΓΓ and the inertial matrix J.

4.1 Action matrix
The system of forces and couples (torques) applied to a body
k is represented by the skew-symmetric action matrix ΦΦk :

ΦΦk

t

z y x

z x y

y x z

x y z

c c f

c c f

c c f

f f f

=

−

=

−
−

−

− − −

c f

f 0

0

0

0

0

 , (14)

where f is  the resultant of the forces, while c  holds the
torques calculated with respect to the origin of the reference
frame.
If  f=[fx fy fz 0]t is an infinitesimal force applied to an
infinitesimal particle of the body whose position is P and
whose volume is dv, matrix Φ is defined as an integral on
the whole body:

dvff tt )PP( −=Φ ∫
where the term contained in the parentheses can be seen as
an extension of the cross product for four-element vectors
(see paragraph 2.1).

4.2 Momentum matrix
In a similar way, the angular and linear momentum of body k
with respect to a reference frame may be described by the
skew-symmetric momentum matrix ΓΓ:

0

0

0

0

0 zyx

zxy

yxz

xyz

t

k

ρρρ
ργγ
ργγ
ργγ

ρ

ργ

−−−
−

−
−

=

−

=Γ , (15)

where γγ is the angular momentum of the body evaluated
with respect to the origin of the reference frame and

t

zyx ggg
vvvm=γ  represents the linear momentum of

the rigid body. Matrix ΓΓ contains the same information as
the "dual Momentum" defined in [1].

If P&  is the velocity of an infinitesimal particle of the body
whose position is P and whose mass is dm, matrix Γ is
defined as an integral on the whole body:

dm)PPPP( tt && −=Γ ∫

4.3 Inertial matrix
The mass distribution of body k can be represented by the
symmetric inertial matrix J. This matrix is also called
pseudo inertial matrix [40, 14].

mqqq

qIII

qIII

qIII

m zyx

zzzzyzx

yyzyyyx

xxzxyxx

t

k ==

q

q
J

J
 , (16)

where m is the mass and 
t

ggg zyxm=q  is the product

of the mass by the center of mass position of the body.
The elements of submatrix J are defined as:

dmxIxx ∫= 2      dmyI yy ∫= 2       dmzI zz ∫= 2

dmyxIxy ∫=       dmzxIxz ∫=        dmzyI yz ∫=  .

Note that the definitions of the elements of J are different
from the usual inertia moments.
For example the familiar inertia moment Jxx  about axis x is
given by:

( ) zzyyxx IIdmzyJ +=+= ∫ 22

and so

I
J J J

xx
xx yy zz=

− + +

2
 .

In other words, matrix J is defined as the following integral
on the whole body:

dm∫= tPPJ

4.4 Change of reference
It is also possible to show that dynamic matrices ΦΦ, ΓΓ and J
are Cartesian representation of tensors and given two frames
(r) and (s) they transform as:

t
srsksrrk ,)()( MM Φ=Φ ,,

t
srsksrrk ,)()( MM Γ=Γ ,, (17)

J M J Mk r r s k s r s
t

( ) ( ) ,= ,,  ,

where Mr s,  is the position matrix of frame (s) with respect

to (r).
The validity of these equations can be proved in the same
way used for W and H.

4.5 Relations between kinematic and dynamic matrices.
The presented matrices can be easily combined to write the
usual mechanics relations.
Choosing an inertial frame (0) the Newton Law is:



6

ΦΦk k k k k
t

( ) , ( ) ( ) ,0 0 0 0 0= −H J J H  . (18)

Expanding the matrices of equation (18) into their elements
and executing the matrix product one can prove that this
relation is equivalent to the usual vector equations:

Gmaf
rr

=    and   fc
rrrr

&
r

×−+×+= )(I OGωγω  , (19)

where I is the usual inertia tensor and G is the center of
mass position of the body with respect to (0); γ

r
 is the

angular moment, cf
rr

and  are the force and the

torque producing the acceleration ω&
rr

andGa .

The weight action may be evaluated by means of equation
(18) introducing the gravity acceleration matrix Hg:

ΦΦk g k k g
t

( ) ( ) ( ) ( ) ( )0 0 0 0 0= −H J J H Hg

x

y

z

g

g

g( )0

0 0 0

0 0 0

0 0 0

0 0 0 0

=  ,

where Hg( )0  holds the gravity acceleration's components in

(0). In the usual case where Z axis indicates the vertical
direction pointing up, we have gx=0, gy=0, gz=-9.81 m/s2.
The linear and angular momentum of a body k whose
velocity is Wk and whose inertia is Jk are given by the
following formula:

ΓΓ k k k k k
t= −W J J W  . (20)

Again it is easy to verify that this equation is the matrix
formulation of the two following vector formulas:

gmv
rr

=ρ    and   ( ) vI
rrr

×−+= OGωγ . (21)

An original procedure to prove the validity of equations (18)
and (20) is explained in appendix A. To extend the validity
of these equations in any reference frame it is sufficient to
apply the transformation formulas (17) to both sides of (18)
and (20).

The kinetic energy of the body k is expressed as a function
of its velocity and inertial matrices by the relation4:

tk k k k
tTrace=

1
2 0 0 0( ), ( ) ,W J W  . (22)

This Eq. can be easily proved from the definition of the
kinetic energy of the body.  If P is the position of a point of

the body then P& is its velocity, the kinetic energy of the body
is the integral of the energy of the infinitesimal particles of
mass dm5:

( )dmTracedm tt
kt ∫∫ == PPPP &&&&

2

1

2

1
. (23)

Introducing  Eq. (6) into Eq. (23) one obtains:

( )( )( ) ( )dmTracedmTrace ttt
kt ∫∫ == WWWW PPPP

2

1

2

1

The velocity matrix is independent from the mass, therefore,
the last term of the equation can be rewritten as:

( )( )tt
k dmTracet WW ∫= PP

2

1
 . (24)

It is easy to verify (see appendix A) that the integral

dmt∫ PP  is the inertial tensor J k  defined in paragraph 4.3.

                                                       
4The trace of a square matrix is the sum of its diagonal
elements.
5If X is a column matrix it yields Trace t t

( )XX X X=

The potential energy pk  of a body k due to the gravitational

effect is expressed by:
pk g kTrace= − ( )( ) ( )H J0 0  .

Knowing the kinetic and potential energy of a body, it is
quite easy to develop the dynamic equations of a system of
rigid bodies using the Lagrangian approach. More details
are given in part 2 of this paper in relation to serial
manipulators.

4.6 The skew operator
To simplify the writing of some relations it is useful to
define a new operator "skew" that for any square matrix X or
tensor X is defined as follows:

skew tX X X= −  .

Tensors ΦΦ and ΓΓ are skew-symmetric, therefore the
equations (18) and (20) or vectorial equations (19) and (21)
can be rewritten as:

ΦΦk k kskew( ) , ( )0 0 0= H J (25)

ΓΓ k k kskew( ) , ( )0 0 0= W J  . (26)

The notation (25) and (26) stresses that each of the two
expressions is equivalent to a linear system of 6 equations:
in fact, both ΦΦ and ΓΓ have only six independent elements.
For example, in the trivial case of a body rotating around a
principal inertial axis, if equation (25) is expressed in
matrix form with respect to a frame having the origin in the
center of the mass and the axes parallel to the principal
inertial axes of the body, the system will assume the well
known form:

( )
( )
( ) 








=
=
=









+=
+=
+=

gz

gy

gx

zyyxxz

yzzxxy

xzzyyx

zmf

ymf

xmf

IIc

IIc

IIc

&&

&&

&&

&

&

&

ω
ω
ω

5 - Matrix L
The matrix representing the instantaneous Screw Axis (ISA)
of a body can be obtained from its velocity matrix W
dividing it by the module of its angular velocity:

0000
0000

0

0

0

buW
L =

−
−

−

==
buu

buu

buu

zxy

yxz

xyz

ω
r  ,

where 222
zyx ωωωω ++=

r
.

If 0==ω
r

, matrix L is defined as:

L
W

b
=  .

From the definition of W it is possible to see that u
represents the direction (unit vector) of the ISA, b can be
expressed as:

b up u= − +ax p  ,
where p is the pitch and pax  is a point of the axis. In other
words u u u b b bx y z x y z, , , , ,  are the Plucker coordinates of

the screw axis. These coordinates are generally known as L,
M, N, P, Q, R [37] or L, M, N, P*, Q*, R* [6]. Matrix L of
this paper has a meaning similar to matrix Q defined in [39,
34] and matrix ∆∆i presented in [33].
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From Eq (6) if we consider an infinitesimal interval of time
dt, the displacement dP of point P is:

dtdtd PPP W== &  ,

where the product Wdt represents the infinitesimal
displacement of the body:

,

00000000

0

0

0

t
W

d

dzdd

dydd
dxdd

dt
o

oxy

oxz

oyz

dφ
φφ

φφ
φφ

=
−

−
−

=

where d d dx y zφ φ φ, ,  are the infinitesimal rotations of the

body and dx dy dzo o o, ,  is the linear displacement of the
pole.

If the direction and the position of the ISA are constant, for
example when the body is connected by a screw or revolute
joint to the reference frame, matrix L is constant and we can
write the following differential equation:

φddtd PPP L== &

or also:
d

d

P
P

φ
= L  .

φ

Figure [6] screw pair.

when integrated this becomes6:
( ) [ ] ( ) ( ) ( )00 PPP φφφ QL == exp  ,

where P(0) is the initial position of the point, P(φ) is the
position of the point after rototranslation of φ around the
screw axis and ( )φQ  is the matrix describing the
rototranslation:

                                                       
6exp[A] indicates the exponential of a square matrix A
which is equal to:

exp
n

n

A I A
A A A

= + + + +
2 3

2 3! !
..........

!

( ) [ ] ( ) ( )

1000

exp
φφ

φφ
t

LQ
R

==  ,

where matrix R can be expressed as:

R I= + + + + +u u u
! !

i
i

φ
φ φ2

2

2
... ...

i
  .

Since u un n+ = −2  (for any n) we can rewrite this equation
as follows:











+−+










−+−+ ...

!4!2
...

!5!3
=

42
2

53 φφφφ
φ uuIR  .

Noting that the terms between round brackets are the series
expansions of sine and cosine we get:

( ) ( )( )φφ cos1
2

−++= uusinIR  .

The translation t can be calculated as follows:
t p u= ( ) +−I R ax pφ  .

These results prove the contents of paragraph 2.3.

6 - Conclusions
The adoption of the presented methodology gives rise to
simple notation and easy programmable algorithms because:
a) both linear and angular terms are handled simultaneously,
b) usual concepts like velocity composition, Coriolis'
theorem or the virtual works principles can be easily
applied, and
c) the practical applications of our theory require only the
knowledge of classic mechanics and of the homogeneous
transformation theory.
Moreover this methodology connects different
methodologies for the kinematics and dynamics of rigid
bodies such as homogeneous transformations, screw theory,
and the tensor method.
Practical applications of the presented methodology are
reported in part 2.

Appendix A

A -1  Demonstration of the velocity composition rule:
W W Wi k i i j i j k i, ( ) , ( ) , ( )= +  .

If Pk  is a point embedded in body k, knowing the position
matrices Mi j,  and M j k, we can write :

P P P, , ,i i k k i j j k k= =M M M  .

The absolute velocity iP&  of point Pi  is (nothing that Pk is

constant):

[ ] kkjjikjjii PP ,,,, MMMM &&& +=  .

Introducing into this Eq. the identity matrices I written as:

jiji ,
1
,

MMI −= and ( ) kjjijikj ,,
1

,
1
, MMMMI −−=

we obtain:

( ) ( )( )[ ] kPP kjjijikjkjjikjjijijii ,,
1
,

1
,,,,,

1
,, MMMMMMMM ΜΜ+= −−− &&&

Remembering that 1−= MMW &  we can rewrite the velocity

iP&  as follows:

[ ] kkjjijijkjjijii PP ,,
1

,)(,,, MMMWMW −+=& ,

and finally remembering the change of reference formulas
(see paragraph 3.2):
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[ ] iikjijii PP )(,)(, WW +=& .

Comparing this relation with the equation:

iikii PP )(,W=&

we get:
W W Wi k i i j i j k i, ( ) , ( ) , ( )= +  .

In the same way the validity of following Eq:
H H H W Wi k i i j i j k i i j i j k i, ( ) , ( ) , ( ) , ( ) , ( )= + + 2

can be proved.

A -2  Demonstration of the relation between action matrix,
acceleration and inertia matrices (Eq. 18).

Let P be the position of a point of a body, PP H=&&  its

acceleration and dmd PF &&=  the inertial force acting on the

infinitesimal particles of mass dm, the action matrix ΦΦ can
be defined as follows:

( ) ( )
( ) .∫

∫∫
−=

=−=−Φ

m

ttt

m

tt

m

tt

dm

dmdd

HH

FF

PPPP

PPPPPP &&&&    ==

Since matrix H is independent of the mass, this relation
becomes:

tt

m

t

m

t dmdm HJJHHH −=












−













=Φ ∫∫     PPPP  .

Starting from the definition of matrix ΓΓ:

( )∫ −Γ
m

tt dmPPPP &&    ==

and applying the same statement used for matrix ΦΦ it is
possible to prove the validity of Eq. (20).

A -3  Demonstration of the change of reference formula for
matrix J (paragraph 4.4)

Matrix J can be defined as:

∫
m

t dmPP    ==J  ,

where P is the position of an infinitesimal particle of mass
dm of the body.
Let us consider two different reference frames (r) and (s)
whose relative position is described by matrix M r s, .

The inertia matrices of the body in r and in s are:

∫∫
m

t
sss

m

t
rrr dmanddm PPPP )()(     ==    == JJ  ,

remembering that P P,r r s s= M  matrix J( )r  becomes:

.,,

,,)(

t
sr

m

t
sssr

m

t
sr

t
sssr

m

t
rrr

dm

dmdm

MM

MMJ















==

∫

∫∫

PP

PPPP    ==

Therefore:
J M J M( ) , ( ) ,r r s s r s

t==  

Appendix B.
Subscript conventions summary
The relative motions between bodies are represented by
matrices which usually appear with some subscripts:

Mi,j , Wi,j (k) , Hi,j (k) , Li,j (k) .

Subscripts i and j specifies the bodies involved, the
subscript k, which is in round brackets, denotes the frame
onto which the quantities are projected. For instance the
velocity of the body (5) with respect to body (3) projected on
frame (2) is:

W 3,5 (2)  .
In special cases when subscripts assume "standard" or
"obvious values" some of them can be omitted to simplify
the notation. This happens for example in paragraph 3 where
the meaning of each matrix is presented. For the same
reason in part 2, the third subscript k is often omitted when
k = i.
The dynamics quantities J, ΓΓ and ΦΦ require just two
subscripts:

Ji (k) ,  ΓΓ i (k) ,  ΦΦi (k)  ;
the subscript i denotes the body involved, and (k) has the
previus meaning (frame on which the quantities are
projected).
Frame (0) is the absolute reference frame; in dynamics it is
assumed to be also the inertial frame.
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