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SpaceLib c© and its authors.

The first functions contained in SpaceLib c© were written in C language by myself in 1988 when a
friend of mine working with the European Space Agency asked for help. I wrote the program described
in § 7.5 of this manual. I realized that a few friends needed software to deal with 3D rototranslations and
I started writing a “private” version of SpaceLib c©.

After a while other people asked for help and in 1990 I wrote the first “public” version of SpaceLib c©

with the support of R. Faglia. The mathematical bases of SpaceLib c© grown and new functions were
realized to deal with velocities, accelerations, forces, torques, momentum and angular momentum.

A second public version of SpaceLib c© was then realized in 1993 with the help of R. Adamini and
several dozens of copies have been distributed through the world. People have been using it both for
Robotic and Biomechanics applications. I have used it for my research and lectures and the students
have shown a great interest in it.

In 1997, a new version of the library in C language has been realized under my supervision by D.
Amadori, P. Ghislotti and G. Pugliese. I made the final refinements with a strong support by B. Zappa;
R. Adamini gave a good theoretical and technical support. This version contains additional functions
and an extended documentation.

Many people asked for a new version of SpaceLib c© in MATLAB c©1. The bases of the MATLAB c© version
of SpaceLib c© have been realized by C. Moiola under my supervision. I made a final “strong” correction
and I also performed some patches in 2001, 2003 and 2004. In this occasion a new version of the manual
have been realized with the help of D. Tosi and M. Camposaragna.

Time passed and the need for a new version of SpaceLib c© which made possible the writing of
symbolic equations grown. This stimulated the realization of the SpaceLib c© in Maple 9 c©2. The basis
of this version were put by F. Bignamini and N. Serana under my supervision. The final version of the
library were made by D. Manara under my supervision with the cooperation of A. Rodenghi.

Between the end of 2004 and the beginning of 2005, D. Manara put a great effort in revising all the
manuals of three SpaceLib c© versions (C, MATLAB c©, Maple 9 c©). This was an occasion to perform small
revisions to the three versions. A great effort was put in maintaining aligned the three releases.

This version of SpaceLib c© will be probably upgraded in future.

We look forward for comments, suggestions, bugs report and copies of papers related with the use of
SpaceLib c©. Send them to G. Legnani (address on cover page).

Brescia, Italy; November 2005

Giovanni Legnani

1MATLAB c© is a registered trademark of MathWorks (http://www.mathworks.com) inc.
2Maple 9 c© is a registered trademark of Maplesoft (http://www.maplesoft.com), a division of Waterloo Maple inc.
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Chapter 1

Introduction

1.1 What is SpaceLib c©

SpaceLib c© is a software library useful for the realization of programs for the kinematic and dynamic
analysis of systems of rigid bodies. This library is currently used in Robotics and Biomechanics. It has
been developed at the Mechanical Engineering Department of the University of Brescia.

The library is intended as an aid in writing programs for the analysis of mechanical systems following
a particular methodology based on 4×4 matrices show in [2], [3] and [4]1. This approach can be considered
a powerful generalization of the Transformation Matrix Approach proposed by Denavit and Hartenberg
[1].

The main feature of this methodology is that it allows the development of the analysis of systems
of rigid bodies in a systematic way simplifying the symbolic manipulation of equations as well as the
realization of efficient numerical programs.

Three versions of the library are presently available, two for numerical simulations in C and MATLAB c©

languages, and one version for the symbolic computation in Maple 9 c©. The MATLAB c© version is useful
for a fast development of numeric programs. The C version is preferable to obtain fast high-efficient
numeric simulations. The Maple 9 c© version is useful when symbolic manipulation is essential, however
it also make possible the development of numeric programs.

Particular effort has been posed in order to keep “aligned” the different versions. Functions with
the same name in the three versions produces essentially the same results. However intrinsic differences
between the languages result in few difformities between the different implementations (see §A, page
119).

All the distributions contain the software source code, and if one likes, he can analyzes it to better
understand its use.

1.2 About this manual

This USER’S MANUAL has been written assuming that the reader knows both the MATLAB c© lan-
guage and the theory on which SpaceLib c© is based. The latter subject is widely described in the
references (page 117). Since SpaceLib c© has been developed by successive steps, some details contained
in the references can differ from pieces of information here contained. In this case, please refer to this
manual.

This manual contains:
• introduction;
• general information on the use of SpaceLib c©;
• a commented directory of the library;
• sample programs;
• a Reference list of papers which describes the mathematical bases of SpaceLib c©.

1copy of [3] and [4] is also included into the distribution file
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1.3 Technical information

The first version of SpaceLib was developed using MATLAB 4.0 version, and tested on PC under Win-
dows 9x c© and Windows NT c© operative systems. The name of the functions are generally no longer than
8 characters.

The library has been patched to work also with MATLAB release 12 (version 6) and tested on Win-
dows 2000 c©, Windows me c©, . . . (see also §2.8).

1.4 Authors’ notes and disclaimer warranties

The authors know that the present version of SpaceLib c© should be possibly improved in the future.
The code or the documentation could contain errors or the documentation could have lacks in some parts.
The library and the related information is provided “as is” without warranty of any kind. The authors
disclaim all warranties, either express or implied, including the warranties of merchantability and fitness
for a particular purpose. In no event shall the authors or their institution or its suppliers be liable for any
damages whatsoever including direct, indirect, incidental, consequential, loss of business profits or special
damages, even if the authors or their suppliers have been advised of the possibility of such damages.
The authors stimulate any suggestion and error reporting by the users.



Chapter 2

Writing programs with SpaceLib

2.1 General information - Read me first

Information contained in this section refers to MS-Windows system. The source code is compatible
with other operative systems with the possible exception of the directories names. SpaceLib c©consists
of about 100 source M-files that should be copied in the directory x:\...\spacelib, where x:\...is
any valid directory (drive and path). For compatibility with windows 3.x c© environment, each M-file
(function or program) consists in one file whose name consist of a maximum of 8 characters. Three
subdirectories should be built to keep separated the functions and the demo programs.

The subdirectory x:\...\spacelib\function is intended to contains the functions, the directory
x:\...\spacelib\bigexa to contains the sample programs listed in § 6. Other “short examples” are
available in x:\...\spacelib\shortexa. The “startup file” spacelib.m and the header file spheader.m
should be placed in x:\...\spacelib.

To install SpaceLib : create the directory and unzip the distribution file spclib m.zip with the
following option to recreate the subdirectories:

x:\...\spacelib>pkunzip -d Spclib m.zip

It is also necessary to modify one line of the file spacelib.m to update the value of a variable containing
the SpaceLib c©path name. This modification is necessary to update the MATLAB c©search path. The line
must be modified as follows:

spc lib dir=’x:\ ...\spacelib’ % spacelib directory

For example, assuming that SpaceLib c©is installed in the ‘standard’ directory c:\programs\matlab, the
line should read:

spc lib dir=’c:\programs\matlab\spacelib’ % spacelib directory

Users utilizing operative systems different from MS-Windows c©, should take care of the different name
conventions and they should also check the lines immediately following the first one where the three
subdirectories are defined. An example follows:

%____________________________________________________________________________
%
% GLOBAL DIRECTORIES DECLARATION:
%____________________________________________________________________________
%
% ***-----> the following line MUST be updated to match your installation!!!}

spc_lib_dir=’c:\programmi\matlab\spacelib’ % spacelib directory

spc_lib_dir_f=[spc_lib_dir, ’\function’] % functions

spc_lib_dir_s=[spc_lib_dir, ’\shortexa’] % short examples

spc_lib_dir_b=[spc_lib_dir, ’\bigexa’] % big examples

13
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In order to initialize the global constants and variables defined by SpaceLib c©, the following lines must
be added at the end of the file matlabrc.m which is located in the MATLAB c©home directory

% Load Spacelib variables and constants
cd x:\...\spacelib
spacelib

As an alternative it is possible to create a file called startup.m to be placed in a directory searched by
MATLAB c©(see the MATLAB c©manual). The file must contains the two following lines

addpath c:\\users\spacelib_m
spacelib

As a further alternative, the user can initialize “by hand” the SpaceLib c©environment by typing the two
previous lines at the MATLAB c©command window.

All the SpaceLib c©functions and sample programs (M-Files) must be placed in the indicated direc-
tories, so that MATLAB c©could find them. All the functions or M-files that uses the constants defined in
the header file spacelib.m must call in the first line of the program the header file spheader.m.

Example:

function FI=actom(fx,fy,fz,cx,cy,cz)

% ACTOM (Spacelib): Actions to matrix.

%

% Builds the action matrix FI from the components of the forces fx, fy, fz

% and the torque (or couples) cx, cy, cz.

% Usage:

%

% FI=actom(fx,fy,fz,cx,cy,cz)

%

% (c) G.Legnani, C. Moiola 1998; adapted from: G.Legnani and R.Faglia 1990

%_________________________________________________________________________

spheader

FI(X,X)=0; FI(X,Y)= -cz; FI(X,Z)= cy; FI(X,U)= fx;

FI(Y,X)= cz; FI(Y,Y)=0; FI(Y,Z)= -cx; FI(Y,U)= fy;

FI(Z,X)= -cy; FI(Z,Y)= cx; FI(Z,Z)=0; FI(Z,U)= fz;

FI(U,X)= -fx; FI(U,Y)= -fy; FI(U,Z)= -fz; FI(U,U)=0;

The header file contains only the global variables declarations. This file is listed below:

global X Y Z U Xaxis Yaxis Zaxis ORIGIN Rev Pri Tor For SYMM_ SKEW_

OK NOTOK global Xaxis_n Yaxis_n Zaxis_n Row Col NULL3 NULL4 UNIT3

UNIT4 global spc_lib_dir spc_lib_dir_f spc_lib_dir_b spc_lib_dir_s

global PIG PIG2 PIG_2

Warning:Although we consider this entities as constants, they are global variables and so all the names
defined in the header file must not be used to indicate a new variable and must not be manipulated in
any kind of operation (see also § 2.4.3).

Warning: MATLAB are case sensitive, for example U and u are not the same variables. In the early
versions of MATLAB c©(e.g. version 4) it was possible but not recommended to deactivate this property
using the command casesen off; SpaceLib c©users should avoid this practice!

Both the M-files and the function files contain useful comments about the routines and the types. The
first comment lines are available as on-line help and the first one is used also by the lookfor command
(see § 2.1.1).
Before using SpaceLib c©, users should have a look, at least, at the startup and at the header files.

All the previous subjects are detailed in the following paragraphs.
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2.1.1 The MATLAB on line help

Online help, which describes the SpaceLib c©functions can be obtained by typing at the MATLAB c©

prompt the command help followed by the function name. For example, the statement
help actom

has the effect to display:

ACTOM (Spacelib): Actions to matrix.

Builds the action matrix FI from the components of the forces fx, fy, fz

and the torque (or couples) cx, cy, cz.}

Usage: FI=actom(fx, fy, fz, cx, cy, cz)

(c) G. Legnani 1998 adapted from G.Legnani and R.Faglia 1990

Functions can also be searched using the MATLAB c©lookfor command. Note that the functions are
searched only in the MATLAB c©search path. For example the command:

lookfor cardan

produces an output like this:

CARDATOH (Spacelib): Cardan angles to acceleration matrix.
CARDATOL (Spacelib): Cardan angles to L matrix.
CARDATOM (Spacelib): Cardan angles to position matrix.
CARDATOR (Spacelib): Cardan (or Euler) angles to rotation matrix.
CARDATOW (Spacelib): Cardan angles to velocity matrix.
CARDOMPT (Spacelib): Cardan angles to angular acceleration.
CARDTOME (Spacelib): Cardan angles to velocity matrix.
CARDTOWP (Spacelib): Builds a matrix for cardan acceleration.
INVA (Spacelib): builds the inverse of a matrix A (Euler/Cardan velocity).
MTOCARDA (Spacelib): Position matrix to Cardan angles.
RTOCARDA (Spacelib): Rotation matrix to Cardan or Eulerian angles.

The command lookfor spaceblib, lists all the SpaceLib c©function contained in the MATLAB c©search
path.

2.2 Notation

In this section are briefly described the notation used in the SpaceLib c©. More information can be
found in [2], [3] and [4].

2.2.1 Subscript conventions

The relative motions between bodies are represented by matrices which usually appear with some
subscripts:

Mi,j Wi,j(k) Hi,j(k) Li,j(k)

Subscripts i and j specifies the bodies involved, the subscript k, which is in round brackets, denotes the
frame onto which the quantities are projected. For instance the velocity of the body (5) with respect to
body (3) projected on frame (2) is:

W3,5(2)

In special cases when subscripts assume “standard” or “obvious values” some of them can be omitted
to simplify the notation. This happens for example where the meaning of each matrix is presented. For
the same reason the third subscript k is often omitted when k = i. The dynamics quantities J , Γ and Φ
require just two subscripts:

Ji(k) Γi(k) Φi(k)

The subscript i denotes the body involved, and (k) has the previous meaning (frame on which the
quantities are projected). Frame (0) is the absolute reference frame; in dynamics it is assumed to be also
the inertial frame.
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Special Matrices Names Use

Φ, PHI Action matrix
G 3×3 upper-left submatrix of H matrix
H, Hx, Wp Acceleration matrix(1)

Hg Gravity acceleration matrix
J Inertia matrix
L, Lx L matrix(1)

m, mx Position or transformation matrix (1)

R, Rx Rotation matrix(1)

W, Wx Velocity matrix(1)

Special Points names

O Frame origin

Axes names

X, Y, Z, U, a Rototranslations axis, Axis of rotation (a=X, Y or Z)

Scalar Parameters names

i, j, k Parameters related to operation dealing with the x, y, z axes
q, qx, qp, qpp joint variables, first derivative, second derivative(1)

Generic elements names

A, B, C, Ax, Mx, mx Matrix name(1)

Pl plane name
v, vx Vector name(1)

L, Lx line name(1)

dim, n Matrix dimension
P, Px Point name(1)

Table 2.1: Naming convention for SpaceLib c© parameters

2.2.2 Naming convection for parameters

In describing SpaceLib c© functions the authors will make use of matrices, vectors, axes, frames,
planes, line, points and constants. Matrices and points are generally denoted by upper case characters
while vectors, axes and scalar parameters (i.e. “phi”, “alpha”, “dim”) are denoted by lowercase letters.
However there are a few exceptions. In order to make more comprehensible the type of the input and
output variables, in the calling list, strings are added to indicate the type of them. Note that this is not
a declaration but only a help to make more clear the usage of the functions. As an example, function
‘extract’ is described in the

[COL3 u, real fi] = extract(MAT A)

and should be used as:

[u, fi]=extract(A)

The string COL3, real and MAT remember you the type of the parameters. The complete list of types are:
MAT matrix with non predefined dimensions
MAT3 3×3 matrix (usually is a rotation matrix)
MAT4 4×4 matrix (usually is a position, velocity or acceleration matrix)
POINT 4×1 vector (column vector indicating a point in homogeneous coordinates)
COL3 3×1 vector (column vector)
ROW3 1×3 vector (row vector)
PLANE 1×4 vector defining a plane (see § 2.4)
LINE 4×2 vector defining a line (see § 2.4)
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real scalar variable
int an integer value

In the user manual the names of the parameters are generally given according to the convention described
in table 2.1.

NOTE (1) Refereing to table 2.1, the ‘x’ character following a variable name is generally substituted
by a digit. It is useful in order to specify two or more variables of the same type in a function
prototype (i.e. m1 and m2 or R1 and R2).

2.2.3 Units

Although sometimes different set of congruent units can be used, users are suggested to utilize always
the International Units System (see table 2.2). Angles must be expressed in radians.

SpaceLib c© units Table
Length m meter
Time s second
Force N newton
Torque N m newton ·meter
Mass kg kilogram
Angle rad radian

Table 2.2: International Units System

2.3 Math functions

In MATLAB c©many mathematical functions are defined. For a complete list, see the MATLAB c©user’s
manual. The more common used together with SpaceLib c©are listed below.

• abs(x) absolute value of x

• max(a, b) the maximum between a and b

• min(a, b) the minimum between a and b

• sign(x) the sign of x which is defined as

 −1 x < 0
0 if x = 0
1 x > 0

• det(A) evaluates the determinant of a square matrix A.

• inv(M) evaluates the inverse matrix M−1

• pinv(M) evaluates the pseudoinverse matrix.

• norm(v) evaluates the norm of a matrix or a vector.

• rank(A) evaluates the rank of the matrix A.

2.4 Variables declarations and types

2.4.1 Data types

In MATLAB c©, each variable is considered as a matrix. Row vectors can be considered as matrix
consisting just in one row, and column vectors can be considered like matrices of only one column. Each
variable exists only after an initialization. Is not possible to declare variables without initialize them.
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2.4.2 Geometrical elements

As better described in the references, in SpaceLib c© some geometrical entities are used: points, lines,
vector, planes and frames. A point is represented by its homogeneous coordinates x, y, z and u:

P = [x, y, z, u]t

In MATLAB c©that is obtained by storing these coordinates into one 4×1 matrix:

P=[ x; y; z; u ]

A line is represented by one point and by its unit vector: x = xp + α · t
y = yp + β · t
z = zp + γ · t

(2.1)

where P = [xp, yp, zp]t is a point that lies on the line. The vector [α, β, γ]t contains the director cosines
which express the direction of the line in a reference frame (α2 + β2 + γ2 = 1); t is the abscissa. In
MATLAB c©this is obtained by storing these two vectors into one matrix with four rows and two columns.
In the first column is contained the vector that defines the point (in homogeneous coordinates). In the
second column are stored the three director cosines:

l =


xp α
yp β
zp γ
1 0


A plane is defined by the following equation:

a ·x + b · y + c · z + d = 0 (2.2)

where a, b, c are the components in a reference frame of the unit vector orthogonal to the plane itself
(a2 + b2 + c2 = 1). The fourth element d expresses the distance with sign of the origin of the reference
frame from the plane. A plane is store in a 4-element row vector:

pl = [ a b c d ]

A frame is represented by a 4×4 matrix containing the homogeneous coordinates of the frame axes and
of the origin of the frame: 

Xx Yx Zx x
Xy Yy Zy y
Xz Yz Zz z
0 0 0 1


2.4.3 Useful constants

Some useful constants have been defined in SpaceLib c©. Although they should be considered as
constants, for technical reasons in MATLAB c© they have been implemented as global variables. Users must
not use variables with the same name and should not modify their value. The following constants has
been defined (see file spacelib.m):

OK = 1
NOTOK = 0

} Values returned by some SpaceLib c© functions in order to specify the success or the
failure of their operations. If a function returns NOTOK, it means that it could not
perform the requested operation. In general, it happens if the function was called
with non valid values for the input parameters.

SYMM = 1
SKEW =-1

}
Utilized by some functions in order to specify if a matrix is symmetric or skew-
symmetric.

Rev = 0
Pri = 1

}
Utilized to denote revolute or prismatic (sliding) pairs.
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Tor = 0
For = 1

}
Utilized to denote torques or forces.

Row = 0
Col = 0

}
Utilized to denote rows and columns.

X=1
Y=2
Z=3
U=4

} Utilized to denote the four homogeneous coordinates of a point or the three compo-
nents of a vector or axis. To remember the differences in the constants definition to
identify the Cartesian axes between SpaceLib c© in C, MATLAB c© and Maple 9 c©, refer
to the table 2.3.

C MATLAB c© Maple 9 c©

X 0 1 1
Y 1 2 2
Z 2 3 3
U 3 4 4

Table 2.3: Rotation axes naming convention

The following constants have been also defined in order to initialize, when applicable, matrices, points
and vectors. They can be generally used only to initialize global or static arrays or matrices.

Xaxis = [ 1 0 0 ]’
Yaxis = [ 0 1 0 ]’
Zaxis = [ 0 0 1 ]’

}
Applicable to variables of the type AXIS in order to set them equal to
an axis coordinate.

Xaxis n = [ -1 0 0 ]’
Yaxis n = [ 0 -1 0 ]’
Zaxis n = [ 0 0 -1 ]’

}
Applicable to variables of the type AXIS in order to set them equal to a
negative axis coordinate.

ORIGIN = [0 0 0 1]’

}
Applicable to a variable of the type POINT in order to set it equal to the
origin of a frame.

NULL3
UNIT3
NULL4
UNIT4

}
Applicable to 3×3 or 4×4 matrices in order to set them equal to the null
or the identity matrix.

PIG 2 = 1.57...
PIG = 3.14...

PIG2 = 6.28...

}
Useful trigonometric constants π/2, π, 2π.

2.4.4 MATLAB built-in constants

In MATLAB c© many constants are defined. Some that may have a significant interest for SpaceLib c© users
are listed in table 2.4. Other constants have been defined in SpaceLib c© and are described in § 2.4.3. The
constant eps is also called zero machine and it corresponds at the smaller number ε that makes true
the relation:

1 + ε > 1

Constant Value
eps 2.52 e -16
pi 3.1415. . .

Table 2.4: MATLAB c©built-in constants
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2.5 Arrays of matrices.

Sometimes could be useful to realize arrays of matrices (e.g. see the sample programs contained in
§ 7.1). In recent versions of MATLAB c© this is possible using array of cells or multidimensional arrays.
However this was not possible with older versions of MATLAB c©. SpaceLib c©, which was created many
years ago, was designed in order to be compatible with new and old versions. For compatibility reasons
the examples contained in this manual do not make use of “cell array” nor “multidimensional array”.

In this section we describe how it is possible to simulate an array of matrices using a standard
“bidimensional array”.

We begin with an example. In recent versions of MATLAB c©the 4×4 relative position matrices of a
serial manipulator can be stored in a cell array named MM as follows

jtype=[......]; % description of robot
theta=[......];
.....
Q=[.....];
for i=1:Nlink % put one 4*4 matrix in one element of the cell array

MM{i}=dhtom(jtype(i),theta(i),d(i),0.,a(i),alpha(i),Q(i));
end

while in oldest MATLAB c©versions the n 4×4 matrices must be put side by side in a 4×(4*Nlink) bidimen-
sional matrix

jtype=[......]; % description of robot
theta=[......];
.....
Q=[.....];
for i=1:Nlink

MM(:,4*(i-1)+1:4*i)=dhtom(jtype(i),theta(i),d(i),0.,a(i),alpha(i),Q(i));
end

New users may positively profit by the use of cell arrays, while users with compatibility problems
must use the other way. More details on this second possibility are reported in the following.

Generally, in our applications matrices should have 4 rows and 4 columns. To simulate matrix arrays
(N matrices of 4×4 elements), we can build a matrix with 4 rows and 4 ·N columns, where N is the
number of the array elements. To scan the matrix we use a 4×4 “window”. For example, the following
code is useful to realize an array with 3 square 4×4 matrices:

N=3; % Number of array elements
mat=zeros(4, 4*N) % Initialize Matrix:

To select a particular matrix of the array, we could use the MATLAB operator ‘:’ (that means all the rows)
and a vector of four elements that defines which columns must be processed.

1 . . . 4 5 . . . 8 4 · i− 3 . . . 4i

M1 M2 . . . Mi . . .

For example, to select the first matrix of the array use the following the code:

mat(:, 1:4)=screwtom(u, fi, P, h) % First matrix of the array
mat(:, 5:8)= ... % Second matrix of the array
mat(:, 4*j-3:4*j)= ... % j-th matrix of the array
% And so on ...

In order to make more simple the code, we can do as follows:

i=[1:4];
mat(:, i)=screwtom(u, phi, P, h) % First matrix of the array
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To select the ‘jth’ matrix of the array, we must increase the vector ‘i’ by 4 not by 1:

i=[1:4];
mat(:, i+4*(j-1))= ... % j-th matrix of the array

If necessary (see sample program rob mat, § 7.1) we could automatize the vector index creation, useful
in for loop, in the following mode:

for j=1:1:MAXLINK
i=[4*j-3: 4*j]; % Vector index utilized to select the j-th matrix
mat(:, i)= ...
.
.
end

or:

i=[-3:0];
for j=1:1:MAXLINK
mat(:, i+4*j)= ...
.
.
end

2.6 Functions working on matrices with non predefined dimen-
sions

Some SpaceLib c© functions have been realized in order to handle matrices of not predefined di-
mensions. In this sense, MATLAB c© is much powerful. It could manipulate matrices without predefined
dimensions. For this reason, the number of the available functions are reduced with respect to the
Clanguage version of SpaceLib c©. For example function normskew can be used to normalize a symmetric
(or skew-symmetric) matrix of any dimension; e.g.:

M=normskew(M, SYMM )

To normalize only the 3×3 upper left part of the matrix, the appropriate code using the same function
is:

M(1:3, 1:3)=normskew(M(1:3, 1:3), SYMM )

Opposite, in the C version of the SpaceLib c©, the function which performs the same operation need to
know the dimension of the matrix and many functions and macros are supplied to deal with all the com-
mon cases of 3×3 and 4×4 (sub)matrices: norm simm skew, n simm3, n simm34, n simm4, n skew3,
n skew34, n skew4.

Clearly, even in MATLAB c©, it is not possibly to performs some operations (sum, product, determinant)
with matrices if their dimensions are not congruent.

2.7 Application Examples

Two groups of examples are supplied with SpaceLib c©:

• Short examples

• Big examples

Short examples are described throughout the § 3 of the manual while big examples are described in depth
in § 7.
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obsolete name new name
dot dot3
dist distp
mod modulus
solve solve l

Table 2.5: function renamed

2.8 Patches

SpaceLib c© was initially developed for MATLAB c© version 4. Some patches have been performed for
compatibility with successive releases of MATLAB c©. These operations made necessary to renames the
SpaceLib c© functions reported in table 2.5. More over, to achieve compatibility with the new versions
of MATLAB c©, others minor changes had to be performed (changes between rows vectors from/to columns
vectors, few operator precedences, ...).



Chapter 3

General function, Kinematics,
Dynamics, Euler angles

In this section, the functions of the library are briefly described. The routines are divided in few
groups. A mnemonic description of the functions is sometimes added. When in doubt, the type of the
parameters of the procedures can be verified looking at the function source code contained in the library
file spacelib.m. In translating SpaceLib c©.C into SpaceLib c©.M any attempt has been made to maintain
a one to one correspondence between the two implementations (parameters, return values, source code),
however in some cases it was not possible or convenient.

See the section § 2.2 and the following ones for notation.

3.1 Position, rotation and rototranslation matrices

dhtom
Denavit & Hartenberg parameters to matrix. (extended version)

Calling sequence: m = dhtom(jtype, theta, d, b, a, alpha, q)

Return value: MAT4 - m

Input parameters: int - jtype; real - theta, d, b, a, alpha, q

Builds the position matrix m of a link from the extended Denavit and Hartenberg ’s parameters [3],
[4] theta, d, b, a, alpha, the value of the joint coordinate q and the type of the joint jtype. jtype
is an integer whose value must be either Rev or Pri (§2.4.3). Rev and Pri are constants defined in the
header file spacelib.m (§6.1). If the joint type is prismatic, the value of q is added to d, while for
revolute joint q is added to theta. The matrix computed by the function is equivalent to the following
rototranslation combination:

ROT (z, θ)TRAS(z, d)TRAS(x, a)TRAS(y, b)ROT (x, α)

If b is equal to 0 the extended D&H parameters coincide with the canonical ones [1].
Example: The position matrix m of frame (i) referred to frame (i-1) (see figure 3.1) is obtained by the
following statement:

m = dhtom (Rev, theta, d, b, a, alpha, q);

The resulting matrix m is evaluated as:

m =


cos(θ + q) −sin(θ + q) cos(α) sin(θ + q) sin(α) a cos(θ + q)− b sin(θ + q)
sin(θ + q) cos(θ + q) cos(α) −cos(θ + q) sin(α) a sin(θ + q) + b cos(θ + q)

0 sin(α) cos(α) d
0 0 0 1

 (3.1)

See also example 3.1.
See also: dhtomstd, rotat, screwtom.

23
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Extended Denavit and Hartenberg parameters
θ link rotation
d link offset
b shift (b=0 for standard definition)
a link length
α link twist

Figure 3.1: Definition of the Denavit and Hartenberg ’s parameters.

dhtomstd
Denavit & Hartenberg parameters to matrix. (standard version)

Calling sequence: m = dhtomstd(theta, d, a, alpha)

Return value: MAT4 - m

Input parameters: real - theta, d, a, alpha

Builds the position matrix m of a link from the standard Denavit and Hartenberg ’s parameters [3], [4]
theta, d, a, alpha. The matrix computed by the function is equivalent to the following rototranslation
combination:

ROT (z, θ)TRAS(z, d)TRAS(x, a)ROT (x, α)

Example: The position matrix m of frame (i) referred to frame (i-1) (see figure 3.1) is obtained by the
following statement:

m = dhtomstd (theta, d, a, alpha);

The resulting matrix m is evaluated as:

m =


cos(θ) −sin(θ) cos(α) sin(θ) sin(α) a cos(θ)
sin(θ) cos(θ) cos(α) −cos(θ) sin(α) a sin(θ)

0 sin(α) cos(α) d
0 0 0 1

 (3.2)

See also example 3.1.
See also: dhtom, rotat, screwtom.

Example 3.1. See sample program E DHTOM.M.

The following example shows the use of dhtom and dhtomstd for the direct kinematics of a serial
manipulator. Numerical data refers to the Stanford Arm (see fig. 3.2 and table 3.1) which has one
prismatic joint and five revolute ones. It is possible to see how the adoption of dhtom simplify the writing
of the code.

clear; spacelib d2=0.2;
d3=0; % 3rd joint coord;

jtype=[Rev Rev Pri Rev Rev Rev]’; % joint type
alpha=[-pi/2 pi/2 0 -pi/2 pi/2 0]’; % --- Denavit and Hartenberg parameters
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Figure 3.2: The Stanford arm with the Denavit e Hantenberg frames.

n.link j.type θ d a α
1 R q1 0 0 −π/2
2 R q2 0.2 0 π/2
3 P 0 q3 0 0
4 R q4 0 0 −π/2
5 R q5 0 0 π/2
6 R q6 0 0 0

Table 3.1: Denavit e Hantenberg ’s parameters of The Stanford arm used in example 3.1.
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a=[0 0 0 0 0 0]’; % --- for the Stanford Arm
d=[0 d2 d3 0 0 0]’;
theta=[0 0 0 0 0 0]’;

Q=rand(6,1) % assign random value to the joint coordinate

% --- direct kinematic using ’dhtomstd’
fprintf(1,’direct kinematic using ’’dhtomstd’’’);
Ma=UNIT4;
for i=1:6

if jtype(i)==Rev
m=dhtomstd(Q(i),d(i),a(i),alpha(i));

else
m=dhtomstd(theta(i),Q(i),a(i),alpha(i));

end
Ma=Ma*m;

end
Ma

% --- direct kinematic using ’dhtom’
fprintf(1,’direct kinematic using ’’dhtom’’’);
Mb=UNIT4;
for i=1:6

m=dhtom(jtype(i),theta(i),d(i),0.,a(i),alpha(i),Q(i));
Mb=Mb*m;

end
Mb

% --- ’dhtomstd’ and ’dhtom’ must perform the same result
% so Ma must be equal to Mb and so dM=0

fprintf(1,’’’dhtomstd’’ and ’’dhtom’’ must perform the same result’);
fprintf(1,’so Ma must be equal to Mb and so dM=0’)

dM=Ma-Mb

extract
Extracts unit vector of screw axis and rotation angle from rotation matrix.

Calling sequence: [u, phi] = extract(A)

Return value: COL3 - u; real - phi.

Input parameters: MAT - A,

Extracts the unit vector u of the screw axis and the rotation angle phi from a rotation matrix stored
in the upper-left 3×3 submatrix of a matrix A. extract performs the inverse operation than rotat.

Example: (see also example 3.2)
[u, phi]=extract(R) extracts u and phi from a rotation matrix R.
[u, phi]=extract(m(1:3, 1:3)) extracts u and phi from the rotation sub-matrix of the position

matrix m.

See also: mtoscrew, screwtom, rotat.

Example 3.2. See sample program E EXTRAC.M.

This example shows the extraction of the screw parameters of the rototranslation, which superimposes
frame (1) onto (2) (see figure 3.3). The results are computed in frame (0). The rototranslation is contained
in matrix Q1,2(0)=M0,2 M1,0. The position matrix of frame (0) with respect to reference frame (1) and
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Figure 3.3: Rototranslation frame of example 3.2

the position matrix of frame (2) with respect to reference frame (0) are respectively

M1,0 =


1 0 0 0
0 1 0 −1
0 0 1 −2
0 0 0 1

 M0,2 =


0 1 0 3

−1 0 0 0
0 0 1 2
0 0 0 1


and the rototranslation matrix is

Q1,2(0) = M0,2 M1,0 =


0 1 0 2

−1 0 0 0
0 0 1 0
0 0 0 1

 =

 R T

0 0 0 1


The following statements

Q=[0 1 0 2; -1 0 0 0; 0 0 1 0; 0 0 0 1];
[u, phi]=extract(Q(1:3, 1:3));

give the following result
phi = π/2 = 1.57079 u = [0, 0,−1]t

mtoscrew
Matrix to screw.

Calling sequence: [u, phi, P, h] = mtoscrew(Q)

Return value: COL3 - u; real - phi, h; POINT - P.

Input parameters: MAT4 - Q.

Extracts from a rototranslation matrix Q the parameters of the screw displacement (axis u, rotation
angle phi, displacement h along u, a point of the axis P). Point P is the point of the screw axis nearest
to the origin of the reference frame. mtoscrew performs the inverse operation than screwtom.

See also example 3.3

See also: extract, rotat.
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Example 3.3. See sample program E MTOSCR.M.

Referring to example 3.2, the following statements:

Q=[0 1 0 2; -1 0 0 0; 0 0 1 0; 0 0 0 1];
[u, phi, P, h]=mtoscrew(Q)

give the result
phi = π/2 = 1.57079 h = 0

P = [ 1 − 1 0 1 ]
′

u = [ 0 0 − 1 ]′

screwtom
Screw to Matrix.

Calling sequence: Q = screwtom(u, phi, P, h)

Return value: MAT4 - Q.

Input parameters: COL3 - u; real - phi, h; POINT - P.

Builds the rototranslation matrix Q from the axis of the screw displacement u, the rotation angle
phi, the translation h along u and the coordinates of a point P of the axis. screwtom performs the
inverse operation than mtoscrew.
See also example 3.4
See also: extract, rotat.

Example 3.4. See sample program E SCREWT.M.

Referring to the figure 3.3 with the given values

phi = π/2 = 1.57079 h = 0

P = [ 1 − 1 0 1 ]′ u = [ 0 0 − 1 ]′

the following statements

fi=pi/2;
u=Zaxis_n;
P=[1 -1 0 1]’;
h=0;
Q=screwtom(u, fi, P, h);

give the resulting matrix

Q =


0 1 0 2
−1 0 0 0
0 0 1 0
0 0 0 1


rotat

Builds the rotation matrix R.

Calling sequence: A = rotat(u, phi)

Return value: MAT - A.

Input parameters: COL3 - u; real - phi.

Builds the rotation matrix R from the unit vector u and the rotation angle phi of the angular
displacement; it stores the matrix in the 3×3 matrix. rotat performs the inverse operation than extract.
Example: (see also example 3.5)
R=rotat(u, phi) builds a 3×3 rotation matrix R.
M(1:3, 1:3)=rotat(u, phi) builds a rotation matrix storing it in the 3×3 upper left part of

a matrix M.
See also: rotat2, rotat24, rotat34.
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O

a

Figure 3.4: rotat24 example of use:
M01=rotat24(a,alpha,O) with a=X, Y, or
Z

O

a

(0)

Figure 3.5: rotat34 example of use:
M01=rotat34(a,alpha,O) with a=X, Y, or
Z

Example 3.5. See sample program E ROTAT.M.

Referring to the figure 3.3 with the given values

phi = π/2 = 1.57079 u = [0, 0,−1]′

the following statements

u=Zaxis_n;
phi=pi/2;
A=rotat(u, phi);

give the resulting matrix

A =

 0 1 0
−1 0 0
0 0 1


rotat2

Rotation around a frame axis.

Calling sequence: R = rotat2(a, phi)

Return value: MAT3 - R.

Input parameters: int - a; real - phi.

This function builds a 3×3 rotation matrix R describing a rotation of angle phi about axis a. a must
be one of the constants X, Y, Z, U (see § 2.4.3). The rotation matrix is stored in the 3×3 upper-left part
of a matrix R. If a is equal to U, the rotation is assumed null (3×3 identity matrix generated).
See also: rotat, rotat24, rotat34.

rotat24
Rotation matrix around an axis with origin in a given point.

Calling sequence: R = rotat24(a, phi, O)

Return value: MAT - R.

Input parameters: int - a; real - phi; POINT - O.

This function builds a position matrix m of a frame whose origin is stored in point O and rotated of
angle phi about axis a (see fig. 3.4). a must be one of the constants X, Y, Z, U (see § 2.4.3). If a is equal
to U the rotation is assumed null (3×3 identity matrix generated).
See also: rotat, rotat2, rotat34.
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rotat34
Rotation matrix around an axis with origin in a given point.

Calling sequence: M=rotat34(a, phi, O)

Return value: MAT4 - M.

Input parameters: int - a; real - phi; POINT - O.

Similar to function rotat24, but rotat34 builds a position matrix m of a frame whose origin is
initially in point O before a rotation a (see fig. 3.5). a must be one of the constants X, Y, Z, U (see
§ 2.4.3). First of all the origin is placed in point O, then the frame (origin included) is rotated of angle
phi about axis a of the absolute frame (see § 7.6 for example of use). If a is equal to U the rotation is
assumed null (3×3 identity matrix generated).
See also: rotat, rotat2, rotat24.

traslat
Builds the matrix m of a translation along a vector.

Calling sequence: m = traslat (u, h);

Return value: MAT4 m.

Input parameters: VECTOR u; real h.

Builds the translation matrix m from the unit vector u and the translation distance h of the prismatic
displacement.
See also: traslat2, traslat24, mtoscrew.

traslat2
Builds the matrix m of a translation along a frame axis.

Calling sequence: m = traslat2 (a, h);

Return value: MAT4 m.

Input parameters: int a; real h.

Builds the matrix m of the translation along axis a and with translation distance q. a must be one of
the constants X, Y, Z, U (see § 2.4.3).
See also: traslat, traslat24, mtoscrew.

traslat24
Builds the matrix m of a translation along a frame axis with origin in a given point.

Calling sequence: m = traslat24 (a, h, p);

Return value: MAT4 m.

Input parameters: int a; real h, POINT p.

Builds the matrix m of the translation along axis a, translation distance q and origin in point P. a
must be one of the constants X, Y, Z, U (see § 2.4.3).
See also: traslat, traslat2, mtoscrew.

3.2 Speed and acceleration matrices

gtom
Gravity acceleration to Matrix.

Calling sequence: Hg = gtom(gx, gy, gz)

Return value: MAT4 - Hg.

Input parameters: real - gx, gy, gz.

Builds the gravity matrix Hg starting from the components gx, gy, gz of the gravity acceleration.
Usually the z-axis is vertical and points upwards and so the acceleration vector components are gx =
0 m/s2, gy = 0 m/s2, gz = -9.81 m/s2.
See also example 3.6
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Example 3.6. See sample program E GTOM.M.

This example shows how to create the acceleration
matrix Hg. This is the most common situation
where the body falls down along the z direction
(see figure 3.6). The following statements

gx=0;
gy=0;
gz=-9.81;
Hg=gtom(gx, gy, gz);

build the acceleration matrix Hg of the falling body
in figure 3.6. Hg is:

Hg =


0 0 0 0
0 0 0 0
0 0 0 −9.81
0 0 0 0



z

x

y

g

Figure 3.6: Frame definition for example 3.6

gtomgapt
G to omega dot.

Calling sequence: omegapto = gtomgapt(G)

Return value: COL3 - omegapto.

Input parameters: MAT3 - G.

Extracts the angular acceleration vector omegapto from the 3×3 upper-left submatrix G of the
acceleration matrix. It uses the relation

Ω̇ =
(G−Gt)

2
(3.3)

See also: wtovel.

makel
Builds a L matrix.

Calling sequence: L = makel(jtype, u, pitch, P)

Return value: MAT4 - L.

Input parameters: int - jtype; COL3 - u; real - pitch; POINT - P.

This function builds a ISA’s (Instantaneous Screw Axis) matrix L describing screw motion (including
simple rotations or a translation), describing a rotation or a translation about an axis which passes through
the point P and whose unit vector is u. pitch is the pitch of the screw. jtype specifies the type of the
motion. It must be either the constant Pri for prismatic joints or Rev for revolute or screw joints. Pri
and Rev are constants defined in spacelib.m(see also § 2.4.3). If jtype is equal to Pri, pitch is ignored.

See also example 3.7 and example 3.8.

See also: makel2

Example 3.7. See sample program E MAKEL.M and E MAKEL0.M.

This example shows how to create the ISA’s (Instantaneous Screw Axis) matrix L of the body n˚ 2
rotating about an axis coincident with z0 in two different reference frame (0) and (k). The 2nd element of
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this revolute joint rotates about axis z of reference frame (0) and has a = 1.2 m. The L matrix referred
to reference frame (0) is

L(0)=


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


This matrix can be built by the following statements:

O=ORIGIN;
pitch=0.;
u=Zaxis;
L0=makel(Rev, u, pitch, O);

The L matrix referred to frame (k) is

L(k)=


0 0 0 0
0 0 1 −1.2
0 −1 0 1.2
0 0 0 0


It is built by the following statements

P=[0 1.2 1.2 1]’;
pitch=0.;
u=Xaxis_n;
Lk=makel(Rev, u, pitch, P);

Figure 3.7: Frames definition for examples 3.7 and 3.8

Example 3.8. See sample program E MAKELP.M.

In this example body n˚ 2 moves in the direction of x0. Frame (0) is embedded on body n˚ 1. The
L matrix of this prismatic joint referred to frame (0) is

L(0)=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


This matrix is built by the following statements

O=ORIGIN;
u=Xaxis;
pitch=0;
L0=makel(Pri, u, pitch, O);
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makel2
Builds a L matrix - version 2.

Calling sequence: L = makel2(jtype, a, pitch, P)

Return value: MAT4 - L.

Input parameters: int - jtype, a; real - pitch; POINT - P.

This function builds a ISA’s (Instantaneous Screw Axis) matrix L describing a rotation or a trans-
lation about an axis parallel to the frame axis a and passing through the point P. a must be one of the
constants X, Y, Z, U (see § 2.4.3). pitch is the pitch of the screw. jtype specifies the type of the motion.
It must be either the constant Pri for prismatic joints or Rev for revolute or screw joints. Pri and Rev
are constant defined in spacelib.m (see also § 2.4.3). If jtype is equal to Pri, pitch is ignored.

See also: makel

wtol
Extracts L matrix from the corresponding W matrix.

Calling sequence: L = wtol(W)

Return value: MAT4 - L.

Input parameters: MAT4 - W.

Extracts the ISA’s (Instantaneous Screw Axis) matrix L from the corresponding W matrix. If W is
the null matrix, the function returns a L matrix filled with zeros (null matrix).

See also example 3.9 and example 3.10.

Figure 3.8: Frames definition for examples 3.9 and 3.10

Example 3.9. See sample program E WTOL P.M.

This example shows how to extract the L matrix knowing the velocity one. In this case the considered
joint is prismatic and it lies in the Y0-Z0 plane forming an angle of 45˚ with Y0. The element 2 is
connected by a prismatic joint to body 1 which does not move with respect to frame (0). Body 2 has the
following velocity matrix W referred to frame (0) embedded on body 1:

W(0)=


0 0 0 0
0 0 0 1.4142
0 0 0 1.4142
0 0 0 0


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The L matrix is built by the statements:

W = [ 0 0 0 0 ;
0 0 0 1.4142;
0 0 0 1.4142;
0 0 0 0];

L = wtol(W);

and the result is:

L =


0 0 0 0
0 0 0 0.7071
0 0 0 0.7071
0 0 0 0


Example 3.10. See sample program E WTOL R.M.

This example shows how to extract the ISA’s (Instantaneous Screw Axis) matrix L knowing the velocity
one. In this case the considered joint is revolute and it rotates about axes x0 orthogonal to plane Y0-Z0

passing through the center of the joint. The element 2 is connected by a revolute joint to body 1 which
does not move with respect to frame (0). Body 2 has the following velocity matrix referred to frame (0)

W(0)=


0 0 0 0
0 0 −2 0
0 2 0 0
0 0 0 0


The L matrix is built by the statements:

W = [0 0 0 0;
0 0 -2 0;
0 2 0 0;
0 0 0 0];

L = wtol(W);

and the result is:

L =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



wtovel
Velocity matrix to velocity parameters.

Calling sequence: [u, omega, vel, P] = wtovel(W)

Return value: COL3 - u; real - omega, vel; POINT - P.

Input parameters: MAT4 - W.

Extracts the screw parameters from a velocity matrix W. The parameters are: u axis of rotation
(unit vector), omega angular speed around u (scalar), vel linear velocity along u, P a point of the axis
(the closest to the origin). If omega is equal to 0 (pure translation) the origin is assumed as P. If both
omega and vel are equal to 0, u is undefined.

See also example 3.11.
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Example 3.11. See sample program E WTOVEL.M and E WTOV P.M.

Considering a velocity matrix W

W =


0 −2 2.5 2.5
2 0 −4.5 1.7

−2.5 4.5 0 3.2
0 0 0 0


The following statements:

W=[0 -2 2.5 2.5;
2 0 -4.5 1.7;

-2.5 4.5 0 3.2;
0 0 0 0 ];

[u, omega, vel, P]= wtovel(W);

evaluate the angular velocity omega, scalar velo-city vel and a point P of the screw axis u. P is the point
of the axis nearest to the origin of the reference frame. The result is:

u = [ 0.815 0.453 0.362 ]′ omega = 5.52 rad/s

P = [ 0.151 − 0.308 0.046 1 ]
′

vel = 3.965 m/s

Considering a pure translation movement, the velocity matrix W is:

W =


0 0 0 2.5
0 0 0 1.7
0 0 0 3.2
0 0 0 0


The statements are the same as in the previous case except that the matrix W is filled with different
values. The result in this case is:

u = [ 0.568 0.386 0.727 ]′ omega = 00 rad/s

P = [ 0 0 0 1 ]′ vel = 4.40227 m/s

veactowh
Velocity and Acceleration to W and H matrices.

Calling sequence: [W, H] = veactowh(jtype, qp, qpp)

Return value: MAT4 - W, H.

Input parameters: int - jtype, real - qp, qpp.

Builds both velocity and acceleration matrices in local frame (W and H) from the values of the joint
velocity and acceleration (qp and qpp) and the type of the joint jtype. The axis of the movement is
the z axis of the local reference frame. jtype is an integer whose value must be either Rev or Pri. Rev
and Pri are constant defined in the header file spacelib.m (see also § 2.4.3). Frames are assumed to be
positioned using the Denavit and Hartenberg’s convention [3] [4].

See also: vactowh2, vactowh3.
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vactowh2
Velocity and Acceleration to W and H matrices - version 2.

Calling sequence: [W, H] = vactowh2(jtype, a, qp, qpp)

Return value: MAT4 - W, H.

Input parameters: int - jtype, a; real - qp, qpp.

Builds both local speed and acceleration matrices (W and H) from the values of the velocity and
acceleration qp and qpp of the link around the axis a and the type of the joint jtype. The motion
axis is coincident with x, y, or z of the local reference frame. jtype is an integer whose value must be
either Rev or Pri. Rev and Pri are constant defined in the header file spacelib.m (see also § 2.4.3). This
function is equivalent to veactowh except that the movement axis can be specified. a must be one of the
constants X, Y, Z, U (see § 2.4.3). The following statement:

[W, H] = vactowh2(jtype, Z, qp, qpp);

is equivalent to

[W, H] = veactowh(jtype, qp, qpp);

See also example 3.12

See also: veactowh.

Figure 3.9: Frames definition for example 3.12

Example 3.12. See sample program E VELWH2.M.

Two fixed reference frames are defined. The two bodies are connected by a revolute joint (see figure
3.9). One body is fixed while the other rotates about the origin of frame (1). With the given values

l = 0.1 m ω = 1.5 rad/s ω̇ = 0.9 rad/s2

the velocity and acceleration matrices referred to frame (1) are:

W12(1)=


0 −1.5 0 0

1.5 0 0 0
0 0 0 0
0 0 0 0

 H12(1)=


−2.25 −0.9 0 0
0.9 −2.25 0 0
0 0 0 0
0 0 0 0


These matrices are built by the statements:
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qp=1.5;
qpp=0.9;
[W1, H1]=vactowh2(Rev, Z, qp, qpp);

vactowh3
Velocity and Acceleration to W and H matrices - version 3.

Calling sequence: [W, H]=vactowh3(jtype, a, qp, qpp, O)

Return value: MAT4 - W, H.

Input parameters: int - jtype, a; real - qp, qpp; POINT - O.

Builds both local speed and acceleration matrices (W and H) from the values of the velocity and
acceleration qp and qpp of the link around the axis a. The motion axis is parallel to x, y, or z of the
local reference frame. This function is similar to vactowh2: the movement axis is parallel to one of the
coordinate axes and can pass through a point different from the origin of the reference frame. a must be
one of the constants X, Y, Z, U (see § 2.4.3). O is a point of the rotation axis. The following statement:

[W, H]=vactowh3(jtype, a, qp, qpp, O);

is equivalent to

[W, H]=vactowh2(jtype, a, qp, qpp);

when the point O coincides with the origin of the reference frame (and therefore a is one of the axes of
the reference frame).
Example: Referring to example 3.12, the matrix W1,2(0) is obtained by the following statement

real qp=1.5;
real qpp=0.9;
POINT O1=[0.4 0.1 0 1]’;
[W0, H0]=vactowh3(Rev, Z, qp, qpp, O1);

See also: vactowh2.

coriolis
Coriolis’ theorem.

Calling sequence: H = coriolis(H0, H1, W0, W1)

Return value: MAT4 - H.

Input parameters: MAT4 - H0, H1, W0, W1.

Performs the Coriolis’ theorem:

H = H0 + H1 + 2W0 ·W1 (3.4)

3.3 Inertial and Actions Matrices
dyn eq

Solve Direct Dynamics system.

Calling sequence: [Wp, F, test] = dyn eq(J, Wp, F, var)

Return value: MAT4 - Wp, F; int - test.

Input parameters: MAT4 - J, Wp, F; 2×6 matrix - var.

Evaluates the acceleration term Ẇ of a rigid body free in space solving the matrix equation

Φ = skew
(
Ẇ · J

)
(3.5)

where Wp is Ẇ and F is Φ. It can also extract the velocity matrix W of a body from the angular
momentum matrix Γ solving the equation

Γ = skew (W · J) (3.6)

where Wp is W , and F is Γ.
var specifies which elements of Wp and F are unknown (for more details on this function see also § 5).
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actom
Actions to Matrix.

Calling sequence: FI=actom(fx, fy, fz, cx, cy, cz)

Return value: MAT4 - FI.

Input parameters: real - fx, fy, fz, cx, cy, cz.

Builds the action matrix PHI from the components of the forces fx, fy, fz and the torque (or couples)
cx, cy, cz.
Example: With the given values

fx = a, fy = b, fz = c, cx = d, cy = e, cz = f

the statement

FI = actom(fx, fy, fz, cx, cy, cz)

fills the matrix FI in the following way

FI =


0 −f e a
f 0 −d b

−e d 0 c
−a −b −c 0


jtoj

Inertia moment and mass to inertia matrix.

Calling sequence: J=jtoj(m, jxx, jyy, jzz, jxy, jyz, jxz, xg, yg, zg)

Return value: MAT4 - J.

Input parameters: real - m, jxx, jyy, jzz, jxy, jyz, jxz, xg, yg, zg.

Builds the inertia matrix J of a body from the values of its mass m, its barycentral moments of
inertia jxx, jyy, jzz, jxy, jyz, jxz and the position of its center of mass xg, yg, zg. The barycentral
frame must be parallel to the reference frame. The resulting matrix is:

J =


Ixx Iyx Izx m xg
Ixy Iyy Izy m yg
Ixz Iyz Izz m zg

m xg m yg m zg m


The elements I of the J matrix are not the usual barycentral moments. These elements are related to
the usual barycentral moments as follows:

Ixx =
− Jxx + Jyy + Jzz

2
Iyy =

− Jyy + Jxx + Jzz
2

Izz =
− Jzz + Jxx + Jyy

2
Ixy = −Jxy Iyz = −Jyz Izx = −Jzx

where the value of Ixx, Iyy, Izz must be positive, therefore Jxx, Jyy, Jzz cannot be assigned random
values. The J elements are defined as follows

Jxx =
∫

y2 + z2 dm Jyy =
∫

x2 + z2 dm Jxx =
∫

x2 + y2 dm

Jxy =
∫
−xy dm Jyz =

∫
−yz dm Jxz =

∫
−xz dm

The I elements are defined as follows

Ixx =
∫

x2 dm Iyy =
∫

y2 dm Ixx =
∫

z2 dm

Ixy =
∫

xy dm Iyz =
∫

yz dm Ixz =
∫

xz dm

See also example 3.13.
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Figure 3.10: Frames definition for example 3.13

Example 3.13. See sample program E JTOJ.M.

This example shows how to create the inertial matrix of a cylinder in two different frames (0) and
(1). The first one is centered in the center of mass G. The cylinder in figure 3.10 has r = 1 kg/m3 and
h = 5 m. G is the center of mass. Its position in frame (0) is [0, 0, 0] and in frame (1) [0, 3, 4]. The
following statements:

m=15.71;
jxx=36.633; jyy=36.633; jzz=7.85;
jxy=0; jyz=0; jxz=0;
xg=0; yg=0; zg=0;
J=jtoj(m, jxx, jyy, jzz, jxy, jyz, jxz, xg, yg, zg);

where m is the mass, jxx, jyy, jzz, jxy, jyz, jxz are the usual inertia moments with respect to the
center of mass, xg, yg, zg are the coordinates of the center of mass in frame (0), builds the inertia matrix
J(0) of the cylinder in the barycentral reference frame:

J(0)=


Ixx 0 0 0
0 Iyy 0 0
0 0 Izz 0
0 0 0 mass

=


3.925 0 0 0

0 3.925 0 0
0 0 32.708 0
0 0 0 15.71


The following statements:

m=15.71;
jxx=36.633; jyy=36.633; jzz=7.85;
jxy=0; jyz=0; jxz=0;
xg=0; yg=3; zg=4;
J=jtoj(m, jxx, jyy, jzz, jxy, jyz, jxz, xg, yg, zg);

where m is the mass, jxx, jyy, jzz, jxy, jyz, jxz are the usual inertia moments with respect to the
center of mass, and xg, yg, zg are the coordinates of the center of mass, builds the inertia matrix J(1) of
the cylinder in frame (1) in which all the quantities are expressed:

J(1)=


Ixx Iyx Izx m ·xg
Ixy Iyy Izy m · yg
Ixz Iyz Izz m · zg

m ·xg m · yg m · zg m

 =


3.925 0 0 0

0 145.315 188.52 47.13
0 188.52 284.068 62.84
0 47.13 62.84 15.71


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It is easy to verify that inertia matrix J(1) can also be obtained using the function mamt (see § 3.4.2):

J1=mamt(J0, M10)

where M10 is the position matrix of frame (0) with respect to frame (1). In the example it is assumed
that the axes of frames (0) and (1) are parallel to each other while the position of frame (1) with respect
to (0) is (x, y ,z)=(0, 3, 4).

PseDot
Pseudo scalar product.

Calling sequence: a = PseDot(L, F)

Return value: real - a.

Input parameters: MAT4 - L, F.

Performs the pseudo-scalar product between matrices L and F.

Example:
If W is the velocity matrix of a body and F is the matrix of the actions (forces and torques) applied

to it,

W =


0 −ωz ωy vx

ωz 0 −ωx vy

−ωy ωx 0 vz

0 0 0 0

 Φ =


0 −cz cy fx

cz 0 −cx fy

−cy cx 0 fz

−fx −fy −fz 0


where f is the force applied to the body and c is the torque, then the power

w = W � Φ = ωxcx + ωycy + ωzcz + vxfx + vyfy + vzfz

is evaluated as

PseDot(W,F) % power of forces

If L represents the screw axis of a joint and F is the total action transmitted by it, the actuator force (or
torque) is evaluated as

PseDot(L,F) % project forces on the direction of the motion

3.4 Matrix transformations

3.4.1 Matrix normalization

normal
Normalizes (orthogonalises) a 3×3 rotation matrix or the 3×3 upper-left submatrix of a position
matrix.

Calling sequence: An = normal(A)

Return value: MAT - An.

Input parameters: MAT - A.

Normalizes the the 3×3 upper-left submatrix R of a position matrix A. R is iteratively put equal to
(see [2])

Ri+1 =
1
2
·

(
1

3
√

det(Ri)
·Ri + 3

√
det(Ri) · (Rt

i)
−1

)
(3.7)

until Ri+1 does not vary in one iteration. This function is used when the rotation matrix is evaluated by
numerical procedure and could contain errors.

See also: normal g, normal3.
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normal g
Normalizes (orthogonalises) any square matrix.

Calling sequence: An = normal g(A)

Return value: MAT - An.

Input parameters: MAT - A.

Transform matrix A into the “most similar” orthogonal matrix (A−1 = At) using the equation (3.7).

See also: normal, normal3.

normal3
Normalizes (orthogonalises) a 3×3 matrix.

Calling sequence: Rn = normal3(R)

Return value: MAT3 - Rn.

Input parameters: MAT3 - R.

Transform the 3×3 matrix R into the “most similar” orthogonal matrix (R−1 = Rt). This is an
optimized version of normal g for 3×3 matrices.

See also: normal3, normal g.

normskew
Normalizes symmetric or skew-symmetric matrices.

Calling sequence: An = normskew(A, sign)

Return value: MAT - An.

Input parameters: MAT - a; int - sign.

Normalizes a square matrix A (extracts the symmetric or skew-symmetric part of A). This function
can be used when matrix A is evaluated by numerical procedure and could contain errors. sign is an
integer whose value can be either SYMM or SKEW . SYMM and SKEW are constants defined in the header
file (see § 2.4.3). If sign is equal to SYMM then the function normalizes a symmetric matrices using the
equation

A =
A + At

2
(3.8)

If sign is equal to SKEW then the function normalizes skew-symmetric matrices using the equation

A =
A−At

2
(3.9)

3.4.2 Change of reference

mami
Transforms a matrix by the rule of M ·A ·M−1 (mami = M ·A ·Minverse).

Calling sequence: A2 = mami(A1, M)

Return value: MAT - A2.

Input parameters: MAT - A1, M.

Performs the matrix operation

A(r) = Mr,s ·A(s) ·Ms,r = Mr,s ·A(s) ·M−1
r,s (3.10)

useful in the change of reference of Q, L, W and H matrices. A1 and A2 are square 4×4 matrices. m
is a transformation matrix. mami performs the inverse operation than miam.

See also example 3.14

See also: miam, miamit, mamt.
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Example 3.14. See sample program E TRSF M.M.

Referring to example 3.12, let’s consider the velocity matrix W(1) and the acceleration matrix H(1) both
referred to reference frame (1) defined as follows

W(1)=


0 −1.5 0 0

1.5 0 0 0
0 0 0 0
0 0 0 0

 H(1)=


−2.25 −0.9 0 0
0.9 −2.25 0 0
0 0 0 0
0 0 0 0


Moreover, the position of frame (1) referred to frame (0) is expressed by the matrix

M0,1=


1 0 0 0.4
0 1 0 0.1
0 0 1 0
0 0 0 1


The velocity and acceleration matrices referred to reference frame (0) are W(0) and H(0) defined as

W(0)=


0 −1.5 0 0.150

1.5 0 0 −0.600
0 0 0 0
0 0 0 0

 H(0)=


−2.25 −0.9 0 0.900
0.9 −2.25 0 −0.135
0 0 0 0
0 0 0 0


W(0) and H(0) matrices can be built by means of the following statements

W1=[0 -1.5 0 0; 1.5 0 0 0;
0 0 0 0; 0 0 0 0];

H1=[ -2.25 -0.9 0 0; 0.9 -2.25 0 0 ;
0 0 0 0; 0 0 0 0];

m01=[1 0 0 0.4; 0 1 0 0.1;
0 0 1 0; 0 0 0 1];

W0=mami(W1, m01);
H0=mami(H1, m01);

miam
Transforms by the rule M−1 ·A ·M (miam = Minverse ·A ·M).

Calling sequence: MAT A2 = miam(MAT A1, MAT M)

Return value: MAT - A2.

Input parameters: MAT - A1, M.

Performs the matrix operation

A(s) = Ms,r ·A(r) ·Mr,s = M−1
r,s ·A(r) ·Mr,s (3.11)

for 4×4 matrices which are contra-variant with respect to the row index and co-variant with respect to
the column index. miam performs the inverse operation than mami.
See also: mami, miamit, mamt.

miamit
Transforms by the rule M−1 ·A · (M−1)t (miamit = Minverse ·A ·Minverse transposed).

Calling sequence: A2 = miamit(A1, M)

Return value: MAT - A2.

Input parameters: MAT - A1, M.

Performs the matrix operation

Ak(r) = Mr,s ·Ak(s) ·M t
r,s (3.12)

for 4×4 contra-variant matrices. miamit performs the inverse operation than mamt.
See also example 3.15
See also: mami, miamit, mamt.
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mamt
Transforms by the rule M ·A ·M t (mamt = M ·A ·Mtranspose).

Calling sequence: A2 = mamt(A1, M)

Return value: MAT - A2.

Input parameters: MAT - A1, M.

Performs the matrix operation

Ak(s) = Ms,r ·Ak(r) ·M t
s,r = M−1

r,s ·Ak(r) ·M−t
r,s (3.13)

useful in the change of reference of J , Γ and Φ matrices. A1 and A2 are square matrices. m is a
transformation matrix mamt performs the inverse operation than miamit.

See also: mami, miamit, mamt.

Example 3.15. See sample program E TRMAMT.M.

A system is made up of 3 point bodies whose masses are 5 kg, 1 kg and 2.5 kg. Their position and
velocity referred to a reference frame (1) are respectively

P1(1) = [2 3 4 1]t P2(1) = [0 1 0 1]t

P3(1) = [1 3 0 1]t Ṗ1(1) = [1 0 2 0]t

Ṗ2(1) = [4 0.5 1 0]t Ṗ3(1) = [0 0 1 0]t

The angular momentum matrix Γ(1) referred to this reference frame can be written as

Γ(1) =
3∑

i=1

(
ṖiP

t
i − PiṖ

t
i

)
mi =


0 19 −2.5 9

−19 0 −38.5 0.5
2.5 19 0 13.5
−9 −0.5 −13.5 0


The position of reference frame (1) respect to another frame, frame (0), is expressed by the following
matrix

M0,1 =


0 1 0 −1.2
−1 0 0 0.5
0 0 1 4
0 0 0 1


The angular momentum matrix Γ(0) in reference frame (0) can be calculated

Γ(0) = M0,1 Γ(1) M t
0,1 =


0 29.55 −52.7 9

−29.55 0 −26.75 0.5
52.7 26.75 0 13.5
−9 −0.5 −13.5 0


The previous operations can be executed by means of the following statements

GAMMA1=[0 19 -2.5 9; -19 0 -38.5 0.5;
2.5 38.5 0 13.5; -9 -0.5 -13.5 0]

m=[0 1 0 1.2;-1 0 0 -0.5;
0 0 1 4; 0 0 0 1];

GAMMA0=mamt(GAMMA1, m);

Where m is M01, GAMMA0 is Γ(0), GAMMA1 is Γ(1). Opposite, Γ(1) can be evaluated from Γ(0) by the following
statement:

GAMMA1=miamit(m, GAMMA0);}
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3.4.3 General operations

grad
Conversion from radians to degrees

Calling sequence: g = grad(r)

Return value: real - g.

Input parameters: real - r.

Obsolete version. Please use function deg.

deg
Conversion from radians to degrees

Calling sequence: g = deg(r)

Return value: real - r.

Input parameters: real - g.

deg converts the r radians value in g degrees value. deg performs the inverse operation than rad.

See also: rad.

rad
Conversion from degrees to radiant.

Calling sequence: r = rad(g)

Return value: real - r.

Input parameters: real - g.

rad converts the g degrees value in r radians value. rad performs the inverse operation than deg.

See also: deg.

jrand
Creates a random matrix with elements in the range min ..max

Calling sequence: m = jrand(imax, jmax, min, max)

Return value: MAT - m.

Input parameters: int - imax, jmax, min, max.

Evaluates a i×j matrix A filled with random elements of min ..max range.

invers
Inverse of a position matrix.

Calling sequence: mi= invers(m)

Return value: MAT4 - mi.

Input parameters: MAT4 - m.

Evaluates the inverse mi of a 4×4 position (transformation) matrix m using the equation:

M0,1 =

 R0,1 T0,1

0 0 0 1

 M−1
0,1 = M1,0 =

 Rt
0,1 −Rt

0,1T0,1

0 0 0 1

 (3.14)

This function works only for 4×4 transformation matrices.
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mtov
Matrix to vector.

Calling sequence: v = mtov(A)

Return value: COL3 - v.

Input parameters: MAT - A.

Extracts vector v1 3×1 from the upper-left 3×3 skew-symmetric submatrix of a matrix A. mtov
performs the inverse operation than vtom.

Example:
The function mtov(M A, 4, v) applied to the skew-symmetric matrix A defined as

A =


0 −c b d
c 0 −a e

−b a 0 f
g h i j


give the resulting vector v defined as v = [a, b, c, ]t

vtom
Vector to Matrix.

Calling sequence: A = vtom(v)

Return value: MAT - A.

Input parameters: COL3 - v.

Creates a 3×3 skew-symmetric submatrix from vector v and stores it in the upper-left part of the
matrix A. vtom performs the inverse operation than mtov.

Example:
The statement

mtov(M A, 4, v);

applied to the vector v defined as v = [a, b, c, ]t gives the resulting skew-symmetric matrix A defined as
follows

A =

 0 −c b
c 0 −a

−b a 0


See also: vtom.

skew
Evaluates the skew-symmetric matrix AB −BtAt.

Calling sequence: C = skew(A, B)

Return value: MAT - C.

Input parameters: MAT - A,B.

Performs the matrix operation C=skew{A ·B}=A ·B - Bt ·At applicable to square matrices with any
dimension.

1A vector −→v could be represented in the following forms [3], [4], [2]:

v =

24 vx

vy

vz

35 v =

24 0 −vz vy

vz 0 −vx

−vy vx 0

35
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tracljlt
Trace of L1 · J ·L2t

Calling sequence: T = tracljlt(L1, J, L2)

Return value: real - T.

Input parameters: MAT4 - L1, J, L2.

Returns the trace2 of the matrix product L1 ·J ·L2t. Applicable to matrices with any dimension.

3.5 Conversion between Cardan (or Euler) angles and matrices

There are several types of coordinates which can express the relative angular position of two moving
bodies in a 3D space; generally two frames are fixed on the two bodies. In the “neutral” position, these
frames are parallel to each other. One of the two reference frames is called absolute, while the other
moving. Their relative angular position is expressed by the position of the moving frame with respect
to the fixed one. The relative orientation of two frames can be imagined as obtained from the neutral
position by three subsequent rotations α, β, γ of the moving frame around three axes: i, j, k. Rotations
are generally performed about the axes of the fixed or of the moving frame.

It is possible to show that a group of three rotations α, β, γ around axes i, j, k of the fixed frame
are equivalent to a sequence of rotations γ, β, α, around axes k, j, i (reverse order) of the moving frame.
As the rotation axes are given, the angular position can be expressed by the three rotation angle values.
Rotations about fixed axes multiply to left, while about moving axes to right.

Value of i, j, k for rotations around axes of fixed frame

Systems Cardan (Tait-Brian) Euler

i 6= j 6= k 6= i i = k 6= j

x, y, z Cardan angles x, y, x
Cyclic y, z, x y, z, y

z, x, y z, x, z Euler angles

z, y, x Nautic angles z, y, z
Anti-cyclic x, z, y x, z, x

y, x, z y, x, y

Table 3.2: Cardan angles convention

3.5.1 Position

cardator
Cardan (or Euler) angles to rotation matrix.

Calling sequence: A = cardator(q, i, j, k)

Return value: MAT3 - A.

Input parameters: ROW3 - q; int - i, j, k.

Builds a rotation matrix starting from the cardan or Euler angles. The parameters i, j, k specify the
sequence of the rotation axes (their value must be the constant X, Y or Z. See § 2.4.3). j must be different
from i and k, k could be equal to i (see also table 3.2). q is a 3 element vector containing the 1st, 2nd

and 3rd angle. cardator performs the inverse operation than rtocarda.

See also: cardatom.

2The trace of a square matrix is the sum of its diagonal elements. If X is a column matrix it yields Trace(XXt) = XtX.
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rtocarda
Rotation matrix to Cardan (or Euler) angles.

Calling sequence: [q1, q2] = rtocarda(R, i, j, k)

Return value: ROW3 - q1, q2.

Input parameters: MAT - R; int - i, j ,k.

Extracts the Cardan (or the Euler) angles from a rotation matrix R. The parameters i, j, k specify
the sequence of the rotation axes (their value must be the constant X, Y or Z. See § 2.4.3). j must be
different from i and k, k could be equal to i (see also table 3.2). The two solutions are stored in the
three-element vectors q1 and q2. rtocarda performs the inverse operation than cardator.

See also example 3.16

See also: mtocarda.

Example 3.16. See sample program E RTOCAR.M.

The angular position of a generic reference frame (i) referred to frame (i-1) is expressed by the matrix

R =

 0.840 −0.395 −0.371
−0.415 −0.029 −0.909
0.348 0.918 −0.189


The rotation sequence is made up of a rotation about axis Y , a rotation about axis X and a rotation
about axis Z (anti-cyclic cardanic convention). The Cardan angles which perform the rotation from
frame (i-1) to frame (i) are calculated by the statements

R=[0.840 -0.395 -0.371;
-0.415 -0.029 -0.909;
0.348 0.918 -0.189];

[q1, q2]=rtocarda(R, Y, X, Z);

The two solutions q1 and q2 are
q1 = [−2.042 1.141 − 1.641 ]

q2 = [ 1.100 2.001 1.501 ]

cardatom
Cardan angles to position matrix.

Calling sequence: m = cardatom(q, i, j, k, O)

Return value: MAT4 - m.

Input parameters: ROW3 - q; int - i, j, k; POINT - O.

Builds the position matrix m of a frame whose origin is in point O and whose orientation is specified
by an Euler/Cardanic convention. The parameters i, j, k specify the sequence of the rotation axes (their
value must be the constant X, Y or Z. See § 2.4.3). j must be different from i and k, k could be equal to i
(see also table 3.2). q: 3 element vector containing the 1st, 2nd and 3rd rotation angle.

See also example 3.17

See also: cardator, mtocarda.

Example 3.17. See sample program E CARDAM.M.

The position matrix m of a frame whose origin is in the point O=[ 100 200 300 1 ]’ which has q defined
by a rotation of 1 rad about axis x, a second rotation of 2 rad about axis z and a third rotation of 1.5 rad
about axis y is built by the following statements:

O=[100 200 300 1]’;
q=[1 2 1.5];
m=cardatom(q, X, Z, Y, O);
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The resulting matrix is:

m =


−0.029 −0.909 −0.415 100
0.874 −0.225 0.431 200
−0.485 −0.350 0.801 300

0 0 0 1



mtocarda
Position matrix to Cardan angles.

Calling sequence: [q1, q2] = mtocarda(m, i, j, k)

Return value: ROW3 - q1, q2.

Input parameters: MAT4 - m; int - i, j, k.

Builds the Euler/Cardan angles, which specify the position of a frame whose position matrix is m.
Both solutions are evaluated. The parameters i, j, k specify the sequence of the rotation axes (their value
must be the constant X, Y or Z. See § 2.4.3). j must be different from i and k, k could be equal to i (see
also table 3.2). q1 and q2 are 3 element vectors containing the 1st, 2nd and 3rd rotation angle of the two
solutions.

See also: rtocarda, cardatom.

3.5.2 Velocity and Acceleration

cardatow
Cardan angles to velocity matrix.

Calling sequence: W = cardatow(q, qp, i, j, k, O)

Return value: MAT4 - W.

Input parameters: ROW3 - q, qp; int - i, j ,k; POINT - O.

Builds the velocity matrix W of a frame whose origin is O and whose orientation is specified by an
Euler/Cardan convention. The parameters i, j, k specify the sequence of the rotation axes (their value
must be the constant X, Y or Z. See § 2.4.3). j must be different from i and k, k could be equal to i (see
also table 3.2). q is a 3 element vector containing the 1st, 2nd and 3rd angle. qp is a 3 element vector
containing the time derivative of q. cardatow performs the inverse operation than wtocarda.

See also example 3.18

See also: cardatoh, wtocarda.

Example 3.18. See sample program E CARDAW.M.

Let’s consider a moving frame whose origin is in the point O=[ 50 10 100 1 ]’. The rotation sequence is
made up by a rotation of 1 rad around axis x, one of 2.5 rad about axis z and a rotation of 0.9 rad about
axis y. The time derivative qp of q is filled with the values 0.2, 4, 1 rad/s. The 4×4 velocity matrix W
is built by the following statements

O =[50 10 100 1]’;
q =[0.1 0.5 0.9];
qp=[0.2 0.4 0.1];
W=cardatow(q, qp, X, Z, Y, O);

The resulting matrix W is:

W =


0 −0.407 0.047 −0.671

0.407 0 −0.152 −5.132
−0.047 0.152 0 0.849

0 0 0 0


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wtocarda
Velocity matrix to Cardan angles.

Calling sequence: [q1, qp1, q2, qp2]= wtocarda(m, W, i, j, k)

Return value: ROW3 - q1, qp1, q2, qp2.

Input parameters: MAT4 - m, W; int - i, j, k.

Builds the Euler/Cardan angles, first and second time derivative of a frame. It uses the velocity
matrix W and the position matrix m. Both solutions are evaluated. The parameters i, j, k specify the
sequence of the rotation axes (their value must be the constant X, Y or Z. See § 2.4.3). j must be different
from i and k, k could be equal to i (see also table 3.2). q1 ans q2 are a 3 element vectors containing
the two angles set. qp1 and qp2 are 3 element vectors containing the time derivative of q1 and q2
respectively.
NOTE: The first time derivative of Euler/Cardan angles is evaluated using the relation:

qpx = omega ∗Ainverse

where qpx can be either qp1 or qp2. Internally called by htocarda. This function builds the transpose
of the matrix find by cardtowp.
See also: htocarda, cardatow.

cardtoom
Cardan angles to angular velocity.

Calling sequence: omega = cardtoom(q, qp, i, j, k)

Return value: COL3 - omega.

Input parameters: ROW3 - q, qp; int - i, j, k.

Evaluates the angular velocity of a moving frame from the three Cardan (or Euler) angles q and their
time derivative qp. The parameters i, j, k specify the sequence of the rotation axes (their value must be
the constant X, Y or Z. See § 2.4.3). j must be different from i and k, k could be equal to i (see also table
3.2). q is a 3 element vector containing 1st, 2nd and 3rd angle. qp is the time derivative of q. omega is
a 3 element column vector containing the angular velocity.
See also example 3.19
See also: cardtome, cardompt.

Example 3.19. See sample program E CRD OM.M.

Consider a moving frame which has variable q defined by a rotation of 10 rad around axis z, a rotation
of 5 rad around axis y and a rotation of 12 rad around axis x. The first time derivative of q is filled with
the values [0 2 1] rad/s. The angular velocity omega is evaluated by the following statements

q=[10 5 12];
qp=[0 2 1];
omega=cardtoom(q, qp, Z, Y, X);

The resulting vector is:
omega = [0.850− 1.8320.959]′

cardtome
Cardan angles to angular velocity matrix.

Calling sequence: A=cardtome(q, qp, qpp, i, j, k)

Return value: MAT3 - A.

Input parameters: ROW3 - q, qp, qpp; int - i, j, k.

Evaluates the angular velocity matrix OMEGA. Equivalent to cardtoom(q, qp, i, j, k, A); but
stores the angular velocity in a matrix A.
See also example 3.20
See also: cardompt.



50 SpaceLib c© in MATLAB c© Chapter 3. General function, Kinematics, Dynamics, Euler angles

Example 3.20. See sample program E CRD ME.M.

There are only a few differences between this example and example 3.19. The angular velocity omega
is no more stored in a column vector because now it is stored in the 3×3 skew-symmetric upper-left
submatrix of a matrix A. So, we have the statements

q =[10 5 12];
qp=[0 2 1];
A=cardtome(q, qp, Z, Y, X);

The resulting matrix is:

A =

 0 −0.959 −1.832
0.959 0 −0.850
1.832 0.850 0



cardatoh
Cardan angles to acceleration matrix.

Calling sequence: H = cardatoh(q, qp, qpp, i, j, k, O)

Return value: MAT4 - H.

Input parameters: ROW3 - q, qp, qpp; int - i, j, k; POINT - O.

Builds the acceleration matrix H of a frame whose origin is O and whose orientation is specified by a
Euler/Cardanic convention. The parameters i, j, k specify the sequence of the rotation axes (their value
must be the constant X, Y or Z. See § 2.4.3). j must be different from i and k, k could be equal to i (see
also table 3.2). q is a 3 element vector containing the 1st, 2nd and 3rd angle. qp is a 3 element vector
containing the time derivative of q. qpp is a 3 element vector containing the 2nd time derivative of q.

See also example 3.21

See also: cardatow, htocarda.

Example 3.21. See sample program E CARDAH.M.

Let’s consider example 3.18. The second time derivative of q, which is qpp, is filled with the values [0.5
1.2 0.3] rad/s2. The acceleration matrix H of the frame is built by the following statements

O= [50 10 100 1]’;
q= [0.1 0.5 0.9];
qp= [0.2 0.4 0.1];
qpp=[0.5 1.2 0.3];
H=cardatoh(q, qp, qpp, X, Z, Y, O);

The resulting matrix H is

H =


−0.168 −1.221 0.104 10.234
1.235 −0.189 −0.302 −29.688
0.020 0.340 −0.025 −1.873

0 0 0 0


When O is put equal to [0 0 0 1]’ this example gives the same resulting matrix of function cardatog (see
example 3.22).
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htocarda
Acceleration matrix to Cardan angles.

Calling sequence: [q1, q2, qp1, qp2, qpp1, qpp2]= htocarda(m, W, H, i, j, k)

Return value: ROW3 - q1, q2, qp1, qp2, qpp1, qpp2.

Input parameters: MAT4 - m, W, H; int - i, j, k.

Builds the Euler/Cardan angles, first and second time derivative of a frame. It uses the acceleration
matrix H, the velocity matrix W and the position matrix m. Both solutions are evaluated. The param-
eters i, j, k specify the sequence of the rotation axes (their value must be the constant X, Y or Z. See
§ 2.4.3). j must be different from i and k, k could be equal to i (see also table 3.2). q1 and q2 are a 3
element vectors containing the two angles set. qp1 and qp2 are a 3 element vectors containing the 1st

time derivative of q1 and q2 respectively. qpp1 and qpp2 are a 3 element vectors containing the 2nd

time derivative of q1 and q2.
See also: mtocarda, wtocarda, cardatoh.

cardatog
Cardan angles to angular acceleration matrix.

Calling sequence: G = cardatog(q, qp, qpp, i, j, k)

Return value: MAT3 - G.

Input parameters: ROW3 - q, qp, qpp; int - i, j, k.

Evaluates the angular acceleration matrix of a moving frame from the three Cardan (or Euler) angles
q and their first and second time derivatives qp and qpp. The parameters i, j, k specify the sequence of
the rotation axes (their value must be the constant X, Y or Z. See § 2.4.3). j must be different from i and
k, k could be equal to i (see also table 3.2). q is a 3 element vector containing the 1st, 2nd and 3rd angle.
qp is the first time derivative of q. qpp is the second time derivative of q. G is the matrix where the
result must be stored.

G = ω̇ + ω2. (3.15)

See also example 3.22

Example 3.22. See sample program E CARDTG.M.

This example is quite similar to example 3.23 (see also example 3.19 and example 3.20). The angular
acceleration is now stored in the matrix A, so we have the following statements

q =[0.1 0.5 0.9];
qp =[0.2 0.4 0.1];
qpp=[0.5 1.2 0.3];
A=cardatog(q, qp, qpp, Y, X, Z);

The resulting matrix is:

A =

 −0.025 0.020 0.340
0.104 −0.168 −1.221
−0.302 1.235 −0.189


cardompt

Cardan angles to angular acceleration.

Calling sequence: omegapto = cardompt(q, qp, qpp, i, j, k)

Return value: COL3 - omegapto.

Input parameters: ROW3 - q, qp, qpp; int - i, j, k.

Evaluates the angular acceleration of a moving frame from the three Cardan (or Euler) angles q and
their first and second time derivatives qp and qpp. The parameters i, j, k specify the sequence of the
rotation axes (their value must be the constant X, Y or Z. See § 2.4.3). j must be different from i and k,
k could be equal to i (see also table 3.2). q is a 3 element vector containing 1st, 2nd and 3rd angle. qp is
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the first time derivative of q. qpp is the second time derivative of q. omegapto is a 3 element vector
containing the angular acceleration.
See also example 3.23

Example 3.23. See sample program E CARDPT.M.

Consider a moving frame whose origin is in the point O=[ 25 23 30 1 ]. It has variable q defined by a
rotation of 1 rad around axis y, a rotation of 1.2 rad around axis x and a rotation of 3 rad around axis z.
The first time derivative of q is filled with the values [ 0, 1, 0 ] rad/s, while the second time derivative is
filled with the values [ 3 2.5 4.01 ] rad/s2. The angular acceleration omegapto is evaluated by the following
statements

q =[1 1.2 3];
qp =[0 1 0];
qpp=[3 2.5 4.01];
omegapto=cardompt(q, qp, qpp, Y, X, Z);

The resulting vector is:
omegapto = [2.573− 0.737− 1.319]′

cardatol
Cardan angles to L matrix.

Calling sequence: L = cardatol(q, i, j, k)

Return value: MAT4 - L.

Input parameters: ROW3 - q; int - i, j, k.

Builds the ISA’s (Instantaneous Screw Axis) matrix L of a frame whose orientation is specified by an
Euler/Cardan convention. The parameters i, j, k specify the sequence of the rotation axes (their value
must be the constant X, Y or Z. See § 2.4.3). j must be different from i and k, k could be equal to i (see
also table 3.2). q is a 3 element vector containing the 1st, 2nd and 3rd angle. cardantol is internally
called by cardtoom and cardompt.
See also: cardtoom, cardompt.

cardtowp

Calling sequence: R = cardtowp(ROW3 q, int i, int j, int k, int dim)

Return value: MAT - R.

Input parameters: ROW3 - q; int - i, j, k, dim.

The parameters i, j, k specify the sequence of the rotation axes (their value must be the constant X,
Y or Z. See § 2.4.3). j must be different from i and k, k could be equal to i (see also table 3.2). q is a
3 element vector containing the 1st, 2nd and 3rd angle. cardtowp is internally called by cardtoom and
cardompt.

inva
inverse a matrix A (Euler/Cardan velocities).

Calling sequence: [Ai, test] = inva(alpha, beta, sig, i, j, k)

Return value: MAT4 - Ai; int - test.

Input parameters: real - alpha, beta; int - sig, i, j, k.

Function that builds the inverse of the matrix A. It is useful in order to evaluate the first time
derivative of the Euler/Cardan angles. Input parameters: alpha, beta: the first two Euler/Cardan
angles; sig: parameters that defines the sign of some elements in the inverse of A. The parameters i, j,
k specify the sequence of the rotation axes (their value must be the constant X, Y or Z. See § 2.4.3). j
must be different from i and k, k could be equal to i (see also table 3.2). Output parameters: Ai: it’s the
matrix where the inverse of A is stored. The function also return a value (test) that indicates if there
are singular positions. Internally called by wtocarda and htocarda.
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3.6 Construction of frames attached to points or vectors

framep
Frames from points.

Calling sequence: A = framep(P1, P2, P3, a1, a2)

Return value: MAT3 - A.

Input parameters: POINT - P1, P2, P3; int - a1, a2.

Builds a rotation matrix describing the angular position of a frame attached to three points. The
origin is in P1, axis a1 points from P1 toward point P2, axis a2 from P1 toward point P3 (if possible).
Axis a1 has priority on a2. Axis a1 is directed as (P2-P1). Axis a3 is directed as (P2-P1)×(P3-P1).
Axis a2 is directed as axis(a3)×axis(a1). The axes a1 and a2 must be either the constant X, Y or Z
defined in spacelib.m (see also § 2.4.3). a1 must be different from a2. The rotation matrix is stored in
the 3×3 upper-left part of the matrix A.

See also example 3.24

See also: frame4p.

Z1

Figure 3.11: The frames used in example 3.24.

Example 3.24. See sample program E FRAMEP.M.

In this example the three given points P1, P2 and P3 in the absolute frame (0) are used to build the
frame (1) With the given values

P1 = [ 5 4 3 1 ]′ P2 = [ 5 6 4 1 ]′ P3 = [ 5 5 5 1 ]′

the angular position of reference frame (1) in figure 3.11, referred to frame (0), is expressed by the matrix:

R01=

 0 0 1
0.894 −0.447 0
0.447 0.894 1


These matrices can be built by the statements:
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P1=[5 4 3 1]’;
P2=[5 6 4 1]’;
P3=[5 5 5 1]’;
R01=framep(P1, P2, P3, X, Y);

(0)

(1)

P2

P1

P3

y

z

Figure 3.12: frame4P example of use: M01=frame4P(P1,P2,P3,Y,Z)

frame4p
Frame from three points.

Calling sequence: m = frame4p(P1, P2, P3, a1, a2)

Return value: MAT4 - m.

Input parameters: POINT - P1, P2, P3; int - a1, a2.

Builds a 4×4 position matrix m describing the position and orientation of a frame attached to three
points. The origin is put in point P1, axis a1 points toward point P2, axis a2 points toward point
P3 (if possible). Axis a1 has priority on a2. The third frame axis is directed as P2-P1×P3-P2. The
three axes form a right frame. More in details: Axis a1 is directed as (P2-P1). Axis a3 is directed as
(P2-P1)×(P3-P1) (cross product). Axis a2 is directed as axis a3×axis a1. In other words the axis
a2 is chosen in such a way that it lies in the plane defined by the three points (see fig. 3.12). The axes
a1 and a2 must be either the constant X, Y or Z defined in spacelib.m (see also § 2.4.3). a1 must be
different from a2.

See also example 3.25

See also: framep.

Example 3.25. See sample program E FRAM4P.M.

Referring to example 3.24, the origin of frame (1) is in the point P1 = [ 5 4 3 1 ]’. The position matrix
m0,1 of frame (1) is then:

m0,1=


0 0 1 5

0.894 −0.447 0 4
0.447 0.894 0 3

0 0 0 1


This matrix is built by the following statements:

P1=[5 4 3 1]’;
P2=[5 6 4 1]’;
P3=[5 5 5 1]’;
m01=frame4p(P1, P2, P3, X, Y);
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framev
Frame from vectors.

Calling sequence: A = framev(v1, v2, a1, a2)

Return value: MAT3 - A.

Input parameters: ROW3 - v1, v2; int - a1, a2.

Builds a rotation matrix describing the angular position of a frame attached to two vectors. Axis a1
is directed as v1, axis a2 is directed as v2 (if possible). Axis a1 has priority on a2. The third frame
axis is directed as v1×v2. The three axes form a right frame. More in details: Axis a1 is directed as v1.
Axis a3 is directed as v1×v2 (cross product). Axis a2 is directed as axis a3×axis a1. In other words
the axis a2 is chosen in such a way that it lies in the plane defined by the two vectors. Axes a1 and a2
must be either the constant X, Y or Z defined in spacelib.m (see also § 2.4.3). a1 must be different from
a2.

See also example 3.26

See also: frame4v.

Figure 3.13: Frames used in example 3.26 and 3.27.

Example 3.26. See sample program E FRAMEV.M.

In this example a point P1 and two given vectors v1 and v2 in the absolute frame (0) are used to build
the frame (1). Referring to example 3.24 these vectors are:

v1 = P2− P1 v2 = P3− P1

The angular position of reference frame (1) in figure 3.13, referred to frame (0), is expressed by the matrix

R0,1=

 0 0 1
0.894 −0.447 0
0.447 0.894 0


This rotation matrix can be built by the statements:

v1=[0 2 1];
v2=[0 1 2];
r01=framev(v1, v2, X, Y);
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frame4v
Frame from a point and two vectors.

Calling sequence: m = frame4v(P1, v1, v2, a1, a2)

Return value: MAT4 - m.

Input parameters: POINT - P1; ROW3 - v1, v2; int - a1, a2.

Builds a 4×4 position matrix m describing the position and orientation of a frame attached to two
vectors and one point. The origin is put in point P1, axis a1 is directed as vector v1, axis a2 is directed
as v2 (if possible). Axis a1 has priority on a2. The third axis is directed as v1×v2. The second axis is
directed as axis a3×axis a1 to form a right frame. More in details: Axis a1 is directed as v1. Axis a3
is directed as v1×v2 (cross product). Axis a2 is directed as axis a3×axis a1. In other words the axis
a2 is chosen in such a way that it lies in the plane defined by the three points. Axes a1 and a2 must be
either the constant X, Y or Z defined in spacelib.m(see also § 2.4.3). a1 must be different from a2.

See also example 3.27

See also: framev.

Example 3.27. See sample program E FRAM4V.M.

Referring to Example 3.26, the origin of frame (1) is in the point P1=[ 5 4 3 ]’. The position matrix
m0,1 of frame (1) is then:

m0,1=


0 0 1 5

0.894 −0.447 0 4
0.447 0.894 0 3

0 0 0 1


This matrix is built by the statements

P1=[5 4 3 1]’;
v1=[0 2 1];
v2=[0 1 2];
m01=frame4v(P1, v1, v2, X, Y);

aaxis
Axis of Frame.

Calling sequence: A = aaxis (n);

Return value: AXIS A.

Input parameters: int n.

Returns a 3 elements unit vector A parallel to a frame axis n. n must be either the constant X, Y or
Z defined in spacelib.h (see also § 2.4.3). For example a=aaxis(Y) returns a = [ 0. 1. 0. ].

3.7 Working with points, lines and planes

3.7.1 Operations on points

angle
Angle between points.

Calling sequence: alpha = angle(P1, P2, P3)

Return value: real - alpha.

Input parameters: POINT - P1, P2, P3.

Function returning the angle between three points which is the angle between vectors (P1-P2) and
(P3-P2).
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dist
Distance between two points.

Calling sequence: d = dist(P1, P2)

Return value: real - d.

Input parameters: POINT - P1, P2.

Obsolete version. Please use function distp.

distp
Distance between two points.

Calling sequence: d = distp(P1, P2)

Return value: real - d.

Input parameters: POINT - P1, P2.

Function returning the distance between two points.

intermed
Intermediate point.

Calling sequence: P = intermed(P1, a, P2, b)

Return value: POINT - P

Input parameters: POINT - P1, P2; real - a, b.

Evaluates point P as the middle point between points P1 and P2 using two weights a and b. We
have

P =
a ·P1 + b ·P2

a + b
(3.16)

When a=b=1 the function intermed is equivalent to function middle. If a + b is equal to zero, it is
assumed that a + b = 1.

See also: middle.

middle
Middle point.

Calling sequence: P = middle(P1, P2)

Return value: POINT - P.

Input parameters: POINT - P1, P2.

Evaluates point P as the middle point between points P1 and P2:

P =
1
2

(P1+P2) (3.17)

vect
Vector between points.

Calling sequence: v = vect(P1, P2)

Return value: COL3 - v.

Input parameters: POINT - P1, P2.

Function evaluating the vector v=P1-P2 (from P2 toward P1).

3.7.2 Operations on lines and planes
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line2p
Line from two points.

Calling sequence: l = line2p(P1, P2)

Return value: LINE - l.

Input parameters: POINT - P1, P2.

Builds a line passing from points P1 and P2.
See also: linpvect.

linpvect
Line from point and vector.

Calling sequence: l = linpvect(P1, v)

Return value: LINE - l.

Input parameters: POINT - P1; COL3 - v.

Builds a line which passes through point P1 and having the same direction as vector v.
See also: line2p.

intersec
Intersection between two lines.

Calling sequence: [lmindist, mindist, pl, I, inttype]= intersec(l1, l2)

Return value: LINE - lmindist; real - mindist; PLANE - pl; POINT - I; int -
inttype.

Input parameters: LINE - l1, l2.

Function evaluating the intersection point I between lines l1 and l2. This function builds also, when
possible, the minimum distance line lmindist and a plane pl containing l1 and l2. The parameter
inttype defines whether an intersection point was found or not. inttype may have the following values:
1 l1 and l2 are oblique lines. I is the middle point on the minimum distance line. pl does not

really contain the two lines.
0 l1 and l2 have exactly one intersection point I. The minimum distance mindist is zero. pl

contains both l1 and l2.
-1 l1 and l2 are the same line. The intersection of the two is the line itself. pl can’t be built.
2 l1 is parallel to l2 (no intersection). pl contains both l1 and l2.

See also: interlpl, inter2pl.

projponl
Projection of point on a line.

Calling sequence: [I, dist] = projponl(P1, l)

Return value: POINT - I; real - dist.

Input parameters: POINT - P1; LINE - l.

Finds the projection I of point P on line l. This function returns also the distance of P from l.
See also example 3.28
See also: project.

Example 3.28. See sample program E PROJPO.M.

The given line l has the origin in point O = [ 3 7.2 2.05 1 ]’ and its direction is [ 0.7 4 9 ]. If the line m
which is orthogonal to l and passes through the point P = [5 1 3 1]’ has to be found, this is performed
by means of the following statements:

l=[3 0.7; 7.2 4; 2.05 9; 1 0];
P=[5 1 3 1]’;
[P1, dist]=projponl(l, P);
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l2=line2p(P, P1);
printm(’The origin of the new line is:’,l2(:, 1))
printm(’The direction of the new line is:’, l2(:, 2))

which produces the following result:
The origin of the new line is: 5 1 3 1
The direction of the new line is: -0.3287 0.8723 -0.3621

distpp
Distance of point from a plane.

Calling sequence: dist = distpp(pl, P)

Return value: real - dist.

Input parameters: PLANE - pl; POINT - P.

Evaluates the distance dist of point P from plane pl.

project
Project a point on a plane.

Calling sequence: [I, dist] = project(P, pl)

Return value: POINT - I; real - dist.

Input parameters: POINT - P; PLANE - pl.

Finds the projection I of point P on plane pl. This function returns also the distance dist of P from
pl.

See also: projponl.

plane
Plane from three points.

Calling sequence: Pl = plane(P1, P2, P3)

Return value: PLANE - Pl.

Input parameters: POINT - P1, P2, P3.

Builds a plane pl which contains the three given points P1, P2 and P3. pl is defined by four
elements, the three components in the reference frame of the unit vector orthogonal to the plane itself
and the distance of pl from the origin of reference frame (considered with the sign).

See also: plane2.

plane2
Plane from point and vector.

Calling sequence: Pl = plane2(P1, v)

Return value: PLANE - Pl.

Input parameters: POINT - P1; ROW3 - v.

Builds a plane pl which contains point P1 and is directed as vector v.

See also: plane.

inter2pl
Intersection of two planes.

Calling sequence: l = inter2pl(pl1, pl2)

Return value: LINE - l.

Input parameters: PLANE - pl1, pl2.

Function evaluating the intersection between two planes pl1 and pl2. The line type is filled with the
resulting value.

See also: intersec.
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interlpl
Intersection of line and plane.

Calling sequence: [I, inttype] = interlpl(l, pl)

Return value: POINT - I; int - inttype.

Input parameters: LINE - l; PLANE - pl.

Function evaluating the intersection point I between line l and plane pl. The parameter inttype
defines whether an intersection point was found or not. inttype has the following values:

1: line l lies on plane pl and the intersection of the two is the line itself.
-1: line l is parallel to plane pl (no intersection).
0: line l and plane pl have exactly one intersection point I.

See also: intersec.

Example 3.29. See sample program E INTRLP.M.

Let’s consider a plane pl = [0 0 1 -5] and a direction dir = [0 0 1]. If the symmetric point of P = [0
6 10 1]’ with respect to plane pl in the direction dir has to be found, this is performed by means of the
following statements

l=zeros(4, 2);

pl =[0 0 1 -5];

dir=[0 0 1 0]’;

P = [0 6 10 1]’;

l(:, 1)=P; % line l by POINT p directed as dir

l(:, 2)=dir;

[P1, inttype]=interlpl(l, pl); % P1=intersection between l and pl

d=distp(P, P1); % d=distance between P and P1

v=vector(dir,d); % v=vector with direction dir

v(U)=0; % and module ‘d’

Ps=P1-v; % Ps=P1-v

Ps(U)=1; % 4th homogeneous coord.of Ps

printm(’The point P is:’, Ps) % Ps is the searched point

which gives the following result:

P = [ 0 6 0 1 ]′

Most of the functions described in this section are not really necessary in the MATLAB c© version of SpaceLib c©.
They are supplied just for compatibility with the C version.

3.8 Operations on matrices and vectors

Many of the functions described in this section are not really necessary in MATLAB c©; but they are supported
for compatibility reasons with the C version of SpaceLib .

3.8.1 Matrices and vectors algebra

molt
Matrix multiplication.

Calling sequence: C = molt(A, B)

Return value: MAT - C.

Input parameters: MAT - A, B.

Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.
Evaluates the matrix product C=A ·B of generic matrices with the appropriate numbers of rows and columns.
The product is directly evaluated by MATLAB , simple typing

C=A*B

however is possible to evaluate matrix product with this function.
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rmolt
Multiply a scalar r by a matrix.

Calling sequence: B = rmolt(A, r)

Return value: MAT - B.

Input parameters: MAT - A; real - r.

Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.
Evaluates the matrix B elements as a product of a matrix A and a scalar r (B=r ·A). A and B can be the same
matrix, so the following call is legal

A=rmolt(A, r);

and the result is A=r ·A.

ssum
Sum of matrices

Calling sequence: C = ssum(A, B)

Return value: MAT - C.

Input parameters: MAT - A, B.

Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.
Evaluates the matrix sum of matrices or vectors having every dimensions C=A+B. A can be equal to B and
C. The sum of two matrices can be directly evaluated by MATLAB , simply typing

C=A+B

However is possible to evaluate matrix product with this function. For instance the following calls are legal:

B =sum(A, B);

the result is B=B+A.

B =sum(A, A);

the result is B=2 ·A.

sub
Subtraction (for matrices).

Calling sequence: C = sub(A, B)

Return value: MAT - C.

Input parameters: MAT - A, B.

Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.
Evaluates the matrix difference of matrices or vectors having d1 rows and d2 columns C=A-B. A can be equal
to B and/or C. For instance the following call is legal:

B=sub(A, B);

the result is B=A-B.

3.8.2 General operations on matrices

crossmto
Cross product for matrices.

Calling sequence: B = crossmto(A1, A2)

Return value: MAT - B.

Input parameters: MAT -A1, A2.

Obsolete version. Please use function crosstom.
Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.

This function performs the operation:
B = A2t ·A1−A1t ·A2

If matrices A1 and A2 express two vectors ~a1 and ~a2 in the matricial form, this operation is equivalent to their
cross product ~b = ~a1× ~a2 and ~b is stored in matrix B.
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crosstom
Cross product for matrices.

Calling sequence: B = crosstom(A1, A2)

Return value: MAT - B.

Input parameters: MAT or COL3 - A1, A2.

Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.
This function performs the operation:

B = A2 ·A1t −A1 ·A2t

If matrices A1 and A2 express two vectors ~a1 and ~a2 either in the matricial3 or vectorial form, this operation is
equivalent to their cross product ~b = ~a1× ~a2 and ~b is stored in matrix B. A1 and A2 must be of the same type:
both column vectors or both 3×3 matrices.

A1 =

24 0 −a1z a1y

a1z 0 −a1x

−a1y a1x 0

35 or

24 a1x

a1y

a1z

35 A2 =

24 0 −a2z a2y

a2z 0 −a2x

−a2y a2x 0

35 or

24 a2x

a2y

a2z

35

B =

24 0 −bz by

bz 0 −bx

−by bx 0

35 =

24 0 a1y a2x − a1x a2y a1z a2x − a1x a2z

a1x a2y − a1y a2x 0 a1z a2y − a1y a2z

a1x a2z − a1z a2x a1y a2z − a1z a2y 0

35
clearmat

Clear a matrix (fill it with zeros).

Calling sequence: A= clearmat(m, n)

Return value: MAT - A.

Input parameters: int - m, n.

Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.
Fills with zeros a m×n matrix A. Equivalent to the MATLAB statement

zeros(m,n)

idmat
Identity matrix.

Calling sequence: A = idmat(id)

Return value: MAT - A.

Input parameters: int - id.

Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.Makes
unitary square matrix A having id×id dimension. Equivalent to the MATLAB statement

eye(id,id)

.

transp
Transpose of a matrix.

Calling sequence: At = transp(A)

Return value: MAT - At.

Input parameters: MAT - A.

Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.
Builds the transpose At of a matrix A . This function is implemented using the MATLAB opera-tor ‘.

3A vector −→v could be represented in the following forms [3], [4], [2]:

v =

24 vx

vy

vz

35 v =

24 0 −vz vy

vz 0 −vx

−vy vx 0

35
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pseudinv
Pseudo inverse of a matrix.

Calling sequence: Api = pseudinv(A)

Return value: MAT - Api.

Input parameters: MAT - A.

Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.
Builds the pseudo-inverse matrix Api of a given matrix A. This function uses the MATLAB function pinv that
evaluates the pseudoinverse matrix.

X = pseudinv(A)

produces a matrix X of the same dimensions as A’ so that

A ·X ·A = A, X ·A ·X = X

and A ·X and X ·A are Hermitian. The computation is based on SVD(A) and any singular values less than a
tolerance are treated as zero.

3.8.3 General operations on vectors

cross
Cross product. -obsolete-

Calling sequence: c = cross(a, b)

Return value: COL3 - c.

Input parameters: COL3 - a, b.

Evaluates the cross product of two 3×3 vectors (c=a×b). Removed because equivalent to the MATLAB function
cross.

dot
Dot product. -obsolete version of dot3

Calling sequence: c = dot(a, b)

Return value: ROW3 - c.

Input parameters: ROW3 - a, b.

The MATLAB function dot performs the dot product of vectors of any dimension.

dot3
Dot product for 3 element vectors.

Calling sequence: c = dot3(a, b)

Return value: real - c.

Input parameters: ROW3 - a, b.

Returns the value of the dot product of two 3 element vectors a and b (c = atb).

dot2
Dot product - version 2.

Calling sequence: c = dot2(a, b)

Return value: real - c.

Input parameters: ROW - a, b.

Returns the value of the dot product of two vectors a and b (c = atb).
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mod
Module of a vector.

Calling sequence: n = mod(a)

Return value: real - n.

Input parameters: VECTOR - a.

Obsolete version. Please use function modulus.

modulus
Module of a vector.

Calling sequence: n = modulus(a)

Return value: real - n.

Input parameters: VECTOR - a.

Returns the module of vector a (|a|). Not really useful in MATLAB . Supported only for compatibility with the
C-language version.

unitv
Unit vector.

Calling sequence: [u, t]= unitv(v)

Return value: COL3 - u; real - t.

Input parameters: COL3 - v.

Extracts the unit vector u of a vector v (u=v/|v|) and returns the module of the vector.
If v=[0 0 0] is u=[0 0 0].

vector
Evaluate a vector (from module and direction).

Calling sequence: v = vector(u, mod)

Return value: COL3 - v.

Input parameters: COL3 - u; real - mod.

Evaluates a vector v which has mod as module and u as unit vector (v=mod ·u).

3.9 Copy functions

mcopy
Matrix copy.

Calling sequence: A2 = mcopy(A1)

Return value: MAT - A2.

Input parameters: MAT - A1.

Copies a matrix A1 into A2 (A2 = A1). Function not really necessary in MATLAB c©: provided just for
compatibility with the C version of SpaceLib c©.

See also: mmcopy, mvcopy.

mmcopy
Copy a part of a matrix.

Calling sequence: B = mmcopy(A, im, jm)

Return value: MAT - B.

Input parameters: MAT - A; int - im, jm.

Copies the im×jm upper-left part of matrix A into matrix B. Function not really necessary in MATLAB c©:
provided just for compatibility with the C version of SpaceLib c©.

See also: mcopy, mvcopy.
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3.10 Print functions

fprintm
Print a matrix (with a comment) on a file.

Calling sequence: fprintm(out, s, A)

Input parameters: file - out; string - s; MAT - A.

Prints in a file a matrix A preceded by the comment contained in string, out is the file descriptor. If the file
pointer out is put equal to 1, the standard output is the screen. The function can also be used to print a vector,
which is handled like a particulary case of a matrix.

See also: printm.

printm
Print a matrix (with a comment) on the screen.

Calling sequence: printm(s, A)

Input parameters: string - s; MAT - A.

Prints only on the screen a matrix A preceded by the comment contained in s.

prmat
Print a position matrix for GRP man graphics post-processor

Calling sequence: prmat (grpout, string, m)

Input parameters: file - grpout; string - s; MAT4 - m.

Writes to a file a position matrix m with the convention of GRP MAN graphics post processor. Matrix m is
written into file grpout preceded by string string.
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Chapter 4

Linear System and inverse of
matrices

Three functions are supplied for the resolution of linear systems: solve l, minvers and linears.

• solve l is useful in standard situations: square non singular coefficient matrix and a single right-hand
vector.

• minvers evaluates the inverse of a matrix solving a particular system.

• linears is much more general, it deals also with rectangular coefficient matrices and more than one right-
hand vectors to be handled at once.

To evaluate the pseudo-inverse of a matrix please use the MATLAB c© function pinv (see § 3.8.2). In the MATLAB c©

version of SpaceLib c© the name of the function linear has been change to linears; the change of the name has
been forced to avoid conflicts with the “standard” MATLAB c© function linear. For similar reasons function solve

has been renamed solve l.

4.1 Function solve l

Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.

4.1.1 General description

Function solver is useful to evaluate the solution of a linear system in the form

A ·x = b (4.1)

where A is a square full rank matrix and b is the right-hand side vector. The direct manipulation of vectors and
matrices in MATLAB c© is very useful in this case and gives the solution simply using the equation:

x =
b

A
x = A+b (4.2)

which makes use of the pseudo-inverse. As an alternative it is possible to use the statement

x=pinv(A)*b

Function solve lalso return the rank of the matrix A, that could be rectangular. This means that the user will
be able to solve the most common system class elements without using the more complex function linears.

4.1.2 Calling list

The calling list for this function is:

67
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solve l
Solve linear sistem.

Calling sequence: [x, irank] = solve l(A, b)

Return value: ROW - x; int - irank.

Input parameters: MAT - A; COL - b.

A is the matrix of the coefficients, b is the right-hand side vector, x is the system solution and irank is the
rank of the matrix A.

4.2 Function minvers

Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.

4.2.1 General description

Function minvers, can be considered a particularization of the more general function linears. So, minvers
finds the inverse of a square full rank matrix A solving a particular system. It uses the general property that,
whenever the rank of A is equal to its dimensions, the equation

A ·x = I (4.3)

where I is the identity matrix, has one single solution. This solution is the inverse of A. In this case, we utilize
the direct manipulation of vectors and matrices in MATLAB c©, that gives the solution simply by the statement

x=A^ (-1)

or

x=inv(A)

4.2.2 Calling list

The calling list for the function minvers is

minvers

Calling sequence: MAT - A; int - dim.

Return value: MAT - Ai.

A is a dim×dim initial matrix and Ai is the inverse matrix.

4.3 Function linears

4.3.1 General description

This section contains information about function linears. This function allows the solution of a linear system
by using a double pivoting elimination method. The linear system must be in the form

A ·x = b (4.4)

where A is the matrix of coefficients and b is the right-hand side. A is generally a square n×n matrix, while b is an
n element column vector. To use function linear in order to evaluate vector x, both A and b must be memorized
in the same matrix (i.e. matrix H). More than one system with the same matrix A can be solved at the same
time; for instance, the following systems can be handled at once:

A ·x1 = b1 A ·x2 = b2 A ·x3 = b3 . . . A ·xh = bh . . . A ·xk = bk (4.5)

To solve the systems, matrix A and vectors bi (at least one must be present) must be stored in the same r×c
matrix H according to the scheme of figure 4.1. During the solution of the system, matrix A is replaced by an
identity matrix and vectors bi are replaced by the solutions of the correspondent system (i.e. xi replaces bi).
However the order of the elements of each xi is changed by the double pivoting algorithm and so the solution
vectors must be reordered (see § 4.3.2 and § 4.3.4).
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A b1 b2 bk

m k

m+ k

n

r

c

...

Figure 4.1: Definitions for parameters of function linears.
Generally m=n, k=1; always r≥n, c≥m+k.

4.3.2 Calling list

The calling list for this function is

linears
Solve linear system.

Calling sequence: [H, ivet, irank, arm] = linears(H, idim, jdim, imax, jmax, nsol,
vpr)

Return value: MAT - H; ROW - ivet; int - irank; real - arm.

Input parameters: MAT - H; int - idim, jdim, imax, jmax, nsol; ROW - vpr.

H: matrix containing matrix A and vectors bi.

idim, jdim: the physical dimensions of H (r and c in figure 4.1).

imax, jmax: the logical dimensions of A (n and m in figure 4.1).

nsol: the number of the right-hand vectors (k in figure 4.1). In the case of figure 4.1 the matrix has the
size imax×jmax but the data uses just a smaller part of it (idim×jdim) where of course idim≤imax and
jdim≤jmax; the other part of the matrix is unused.

ivet: vectors of m integers that gives information necessary to reorder the elements of x. ivet[ i ]+1==k means
that the value of the kth element of x is stored in position i of b. A standard way to reorder the solution
putting the solution of the kth system (k = 1, 2, . . .) in a vector x is as follows:

for i=1:1:n x(ivet(i)+1)=H(i, n+k); end

irank: an estimation of the rank of matrix A.

arm: the absolute value of the greater element of A during the last pass of elimination.

vpr: vector specifying which variables must be considered as main variables. That means that they will be
forced in the first positions of vector ivet and so of vectors x. The list of the variables must be terminated
by a value -1. So, for instance if m≥8, then a valid value for vpr is [ 3 5 0 7 -1 ]. In the usual cases, vpr
is a vector containing only one element whose value is -1:

vpr = -1

This allows the algorithm to perform full pivoting on all the variables.

NOTE : function linears can be also used to detect if a general linear system has or has not solution. In this
case matrix A can have a number of columns which is different from the number of the rows (n6=m). In this case
function linears transforms the system into an equivalent system (i.e. which has the same solutions). After the
execution of linears matrix A and vectors bi will be in the block form of figure 4.2.



70 SpaceLib c© in MATLAB c© Chapter 4. Linear System and inverse of matrices

A

b

7

6

5

4

3

2

1

7654321

b0000000

b0000000

byy10000

byy01000

byy00100

byy00010

byy00001

vvvvvvv

matrix

ivet vector

Figure 4.2: Final form of a linear system after a call to function linears with a 7×7 matrix.

0, 1 are elements whose value is 0 or 1.
y are elements whose value depends on the system.
bi are elements of vector b.
vi are elements of vector ivet.

Table 4.1: Notation used for figure 4.2

All the blocks can have any dimension and may not be present depending on the coefficients stored in matrix
A. If in the last rows of the matrix the block of zeros is present, generally the system has not solution (over
determined system) unless the last elements of b after the transformation are null (the elements correspondent
to the block of zeros, that is b6 and b7 in Figure 4.2). If the block of y is present but the block of zeros is not
present, the system has an infinite number of solutions that can be found assigning an arbitrary value at the last
elements of x (the elements corresponding to the block of y, that is v6 and v7 in Figure 4.2).

As an example if the system is as follows:

A =

2664
1 1 1 2 1
0 1 1 2 1
0 0 2 2 1
0 0 2 2 1

3775 ; X =

266664
a0

a1

a2

a3

a4

377775 ; b =

2664
6
5
3
3

3775 (4.6)

Function linear detects that matrix A has a rank of 3 and transforms it in the form of figure 4.3. That means
that the rank of A is 3, the system has an infinitive number of solutions and that you can assign any value to
elements 1 and 4 of x (a1 and a4) and then evaluate the corresponding value of the others (a0, a2 and a3). If you
put a1=a4=0, then the value of the other elements are directly stored in b (a3 = 3.5, a0 = 1, a2 = −2). If a1=7
and a4=4 then a3=-5.5, a0=1 and a2=5.

ivet
b

000.0000.0000.0000.0000.00.000

000.2000.0000.1000.1000.00.000

000.1000.0000.0000.0000.10.000

500.3500.0000.1000.0000.01.000

41203

41203

−−

aaaaa

Figure 4.3: Numerical example of the output of function linears.

4.3.3 Sample program to solve a linear system TEST-LIN

As an example of the usage of function linears, let us consider the sample program TEST-LIN which reads
and solves a linear system whose matrix of coefficient and whose right-hand side vector are memorized in file
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INP.DAT (See § 4.3.4). The program reads the dimension of the matrix, the matrix itself and the vector and prints
the solution if it exists. If the matrix is not a square full rank matrix, the program prints the resulting matrix
and vector after the transformation.

The input matrix A and vector b for the example just presented are

A =

2664
1 1 1 2 1
0 1 1 2 1
0 0 2 2 1
0 0 2 2 1

3775 b =

2664
6
5
3
3

3775 (4.7)

while file INP.DAT is filled with the values listed in table 4.2.

FILE INP.DAT (DATA FILE ) MEANING

4 5 Matrix dimensions
1 1 1 2 1 6
0 1 1 2 1 5 value of A and b
0 0 2 2 1 3
0 0 2 2 1 3

Table 4.2: Content of the file INP.DAT

4.3.4 The program (TEST-LIN.M)

%_______________________________________________________________________________________________

% TEST-LIN.M

% Sample program which reads and solves a linear system whose matrix of coefficient and whose

% right-hand side vector are memorized in the file INP.DAT

%_______________________________________________________________________________________________

spheader

Nmax=6;

Mmax=7;

H=zeros(Nmax,Mmax+1);

A=zeros(Nmax,Mmax);

b=zeros(Nmax,1);

x=zeros(Mmax,1);

ivet=zeros(Mmax,1);

vpr=zeros(1);

vpr(1)=-1;

clc % Read matrix of coefficients and right-hand side vector from file

fid=fopen(’inp.dat’,’r’);

if (fid==-1)

error(’Error: unable to open input file in TEST_LIN.M ’)

end

n=fscanf(fid,’%d’,1); % Read dimension of the matrix

m=fscanf(fid,’%d’,1);

if (n>Nmax)|(m>Mmax)

error(’ Error in TEST_LIN.M : The matrix is too big ’)

end

c=1; % Read matrix and vector

for i=1:1:n

for j=1:1:m

t(c)=fscanf(fid,’%f’,1);

A(i,j)=t(c);

end

t(c)=fscanf(fid,’%f’,1);

b(i)=t(c);

c=c+1;

end
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for i=1:1:n % Copy matrix of coefficients

for j=1:1:m

H(i,j)=A(i,j);

end

end

for j=1:1:n % Copy right-hand side vector

H(j,m+1)=b(j);

end

fprintf(1,’\n Matrix and right-and side vector\n\n’);

for i=1:1:n

for j=1:1:m+1;

fprintf(1,’%7.3f’,H(i,j));

end

fprintf(1,’\n’);

end

[H,ivet,irank,arm]=linears(H,Nmax,Mmax+1,n,m,1,vpr); % Solve the system

if (n==m) & (irank==n)

fprintf(1,’The solution is: \n’);

for i=1:1:n

x(ivet(i)+1)=H(i,n);

end

fprintm(1,’x=’, x)

else

if (n~=m)

fprintf(’\n\nThe number of rows and columns are different.\n’);

end

printm(’The rank of the matrix is: ’, irank);

printm(’ ivet:’,ivet);

fprintf(’\nThe matrix is\n ’);

for i=1:1:n

for j=1:1:m+1

fprintf(’%3.3f ’,H(i,j))

end

fprintf(’\n’);

end

end



Chapter 5

Direct Dynamics: function dyn eq

5.1 General discussion

This paragraph discusses function dyn eq (see also § 3.3).
This function solves the equations

Φ = skew{Ẇ · J} (5.1)
Γ = skew{W · J} (5.2)

since they have the same form, we will discuss only the first one.
Generally in the first equation the unknown is Ẇ , while in the second one is W . Both matrix Φ and

Ẇ have six independent values; so in total they have 12 elements. If J is known and a total of 6 elements
out of the 12 of Φ and Ẇ are known, it is possible to evaluate the others. To perform this operation
function dyn eq needs informations about which values are known and which values must be evaluated.
This is performed by the 2×6 integer matrix var.
var must be filled by six “1” to indicate the elements to be evaluated and by six “0” to indicate the
elements which are known. The first line is relative to the acceleration (angular and linear) and the
second one to the actions (torques and forces). The first three columns are relative to angular terms
(angular acceleration and torques) and the second to linear terms (acceleration and forces) according to
this scheme:

var =
[

ẇx ẇy ẇz ax ay az

tx ty tz fx fy fz

]
(5.3)

so in the usual cases in which Φ is known and it’s necessary to evaluate Ẇ , matrix var must be filled in
the following way:

var =
[

1 1 1 1 1 1
0 0 0 0 0 0

]
(5.4)

Opposite, if Ẇ is known and you want to evaluate Φ, the correct values are:

var =
[

0 0 0 0 0 0
1 1 1 1 1 1

]
(5.5)

in this last special case, dyn eq gives the same results as function skew( Wp, J ). In every case, you
must have exactly one “1” and one “0” in every column of var.
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5.2 The Calling List.

The calling list (see § 3.3) for function dyn eq to solve equation (5.1) is:

[Wp, F, test] = dyn eq(J, Wp, F, var);

where:

J 4×4 inertia matrix of the body
Wp 4×4 acceleration matrix containing Ẇ
F 4×4 action matrix containing Φ
var 2×6 matrix which specifies which elements of Ẇ and Φ are unknown

The calling list for function dyn eq to solve equation (5.2) is:

[W, G, test] = dyn eq(J, W, G, var);

where:

J 4×4 inertia matrix of the body
W 4×4 velocity matrix containing W
G 4×4 momentum matrix containing Γ
var 2×6 matrix which specifies which elements of W and Γ are unknown

dyn eq returns value ‘test’ that is OK if the operation could be performed properly or NOTOK if an error
had been detected. OK and NOTOK are constants defined in spacelib.m (see also § 2.4.3). An error occurs
if dyn eq is called with parameters that have not physical meanings (e.g. J is not positive defined or
both ẇi and ti or ai and fi are unknown for any i).
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Header files

6.1 The header file spacelib.m

This is the header file which must be called to initialize SpaceLib c©.

%________________________________________________________________________________

%

% HEADER FILE SpaceLib.M (November 2005)

%

% In this file are defined all the constants that are used by the

% SpaceLib functions. These constants are memorized in global variables.

%

% HEADER FILE USAGE:

%

% 1) If this M-file is invoked by the matlab command window or by the

% matlabrc.m file, all the global variables are automatically loaded

% in memory (see user’s manual).

%

% Typing the istruction "who global", MATLAB displays the list of the global

% variables loaded in memory.

%

% 2) Every function that uses the global variables, must include the header

% file ’spheader’ in the first line of the program (see chapter 2.1 of the

% user manual).

%

% 3) The directories containig SpaceLib are assigned to global variables

% and the default directory is set accordingly.

%

% WARNING 1: The global variables defined in this of the constants defined in

% the header file have special meaning for many SpaceLib functions.

% Their value MUST NOT changed at any time.

%

% WARNING 2: there is a line similar to this

%

% spc_lib_dir=’c:\users\spacelib_m’ % SpaceLib directory

%

% that MUST be updated to match your installation!!!

%________________________________________________________________________________

clc

%________________________________________________________________________________

%

% GLOBAL VARIABLES DECLARATION:
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%________________________________________________________________________________

spheader % declare global variables

%________________________________________________________________________________

%

% GLOBAL VARIABLES INITIALIZATION:

%________________________________________________________________________________

X=1; Y=2; Z=3; U=4;

Xaxis = [1 0 0]’;

Yaxis = [0 1 0]’;

Zaxis = [0 0 1]’;

Xaxis_n = [-1 0 0]’;

Yaxis_n = [0 -1 0]’;

Zaxis_n = [0 0 -1]’;

ORIGIN=[0 0 0 1]’;

Rev =0; Pri = 1;

Tor =0; For = 1;

SYMM_ =1; SKEW_ =-1;

Row =0; Col = 1;

OK=1; NOTOK=0;

PIG=pi;

PIG_2=pi/2;

PIG2=2*pi;

NULL3=zeros(3);

NULL4=zeros(4);

UNIT3=eye(3);

UNIT4=eye(4);

%________________________________________________________________________________

%

% GLOBAL DIRECTORIES DECLARATION:

%________________________________________________________________________________

% ***-----> the following line MUST be updated to match your installation!!!

spc_lib_dir=’c:\users\spacelib_m’ % spacelib directory

spc_lib_dir_f=[spc_lib_dir,’\function’] % functions

spc_lib_dir_s=[spc_lib_dir,’\shortexa’] % short examples

spc_lib_dir_b=[spc_lib_dir,’\bigexa’] % big examples

matlabpath([matlabpath,’;’, spc_lib_dir,’;’, spc_lib_dir_f, ’;’,spc_lib_dir_s,’;’,

spc_lib_dir_b]);

tmp= [’cd ’,spc_lib_dir];

eval(tmp);

clear tmp;

%________________________________________________________________________________

%

% PRINT "HEADER":

%________________________________________________________________________________

fprintf(’\n___________________________ SpaceLib ___________________________\n’)
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fprintf(’ VERSION 2.2\n’)

fprintf(’ A software library for\n’)

fprintf(’ the kinematic and dynamic analysis\n’)

fprintf(’ of systems of rigid bodies.\n\n’)

fprintf(’ Includes general functions for vectors, matrices,\n’)

fprintf(’ kinematics, dynamics, Euler angles and linear systems\n\n’)

fprintf(’ (c) G.LEGNANI B.ZAPPA R.ADAMINI 1990 - 2005\n\n’)

fprintf(’ MATLAB version with the cooperation of C.MOIOLA\n’)

fprintf(’ University of Brescia - Mechanical Engineering Department\n’)

fprintf(’ Via Branze 38, 25123 BRESCIA, Italy\n’)

fprintf(’ e-mail: giovanni. legnani @ ing.unibs.it\n’)

fprintf(’ www:http://bsing.ing.unibs.it/~glegnani\n\n’)

fprintf(’ SpaceLib (c) loaded in workspace\n’)

fprintf(’\n’);

fprintf(’ bug fixed January 2004 and November 2005’);

fprintf(’ (tested wih matlab 6.0.0.88 release 12)\n’);

fprintf(’ see readme.txt and user’’s manual for release notes\n’);

fprintf(’___________________________________________________________________________\n’)

cd

who global

6.2 The header file spheader.m

The file spheader.m, that must be ‘included’ in every program or function that uses SpaceLib c© constants,
contains only the global variable declaration described in § 2.1.

global X Y Z U Xaxis Yaxis Zaxis ORIGIN Rev Pri Tor For SYMM_ SKEW_ OK NOTOK

global Xaxis_n Yaxis_n Zaxis_n Row Col NULL3 NULL4 UNIT3 UNIT4

global spc_lib_dir spc_lib_dir_f spc_lib_dir_b spc_lib_dir_s

global PIG PIG2 PIG_2
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Chapter 7

Sample programs

7.1 Program Rob Mat

7.1.1 General information

This section presents the bases of a computer program for the automatic solution of the direct kine-
matic problem and the inverse dynamic problem for an industrial robot. To solve the direct kinematic
problem means to find the motion of the end-effector of a given robot when the motions of its joint actu-
ators are known. To solve the inverse dynamic problem means to find the actuators and the constraint
actions (torques and forces) between the contiguous links of a given robot when the external actions and
the motion of the manipulator are known.

In this example the robot has been regarded as an open chain of rigid bodies (links) which are jointed
to each other by revolute or prismatic pairs (see figure 7.1). The program reads from a “description
file” (*.DAT) the structure of the robot (link, lengths, masses, joint types etc.) and from a “motion file”
(*.MOT) the motors movement and, as output, prints the motion (position, velocity and acceleration) of
each link, as well as the internal actions between each couple of contiguous links.

Figure 7.1: The scheme of a general serial manipulator.

7.1.2 The solution algorithm

Initially, the sample program ROB-MAT calculates the absolute position, speed and acceleration of all
the links of the robot. This task is iteratively executed to evaluate the kinematic quantities of the links,
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starting from the base of the robot and proceeding to the end-effector. Conversely, the dynamic analysis
is iteratively executed from the end to the base. The table 7.1 explains the meaning of the symbols used
in ROB-MAT.

The program is structured in three main parts1: DATA INPUT, CALCULATIONS and DATA OUTPUT.

DATA INPUT can be divided into four steps:

1) Input data describing the geometrical structure of the manipulator:

– the number of links constituting the robot;
– for each link “i”:

∗ the joint type;
∗ five parameters to describe the position of the frame (i), fixed on link “i”, with respect to

the frame (i-1), fixed on link “i-1”, according to an extension to Denavit and Hartenberg
approach (see [3], [4]);

2) Input data describing the dynamic parameters of the manipulator:

– for each link “i”:

∗ the six barycentral inertial moments;
∗ the mass;
∗ the coordinates of the center of mass referred to the local frame (i);

3) Input data describing the external actions on manipulator:

– the three components of gravity acceleration referred to the base frame;
– the actions (the components of force and the components of torque) applied on the end-effector

of the robot referred to the local frame of the gripper;

4) Input data describing the motions of the actuators:

– for each link “i” and for each instant:

∗ the relative position, speed and acceleration of frame (i) with respect to frame (i-1);

The CALCULATION part, deeply using the subroutines of the library, can be briefly described by means of
the following statements (see § 7.1.4):

• Step (1) relates with sorts of initialization procedures to change from the scalar to the matrix
environment.

• Steps (2) to (9) are included in a for cycle to repeat the kinematic calculations (absolute position,
speed and acceleration) for all the links forming the robot.

• Step (10) initializes the dynamic calculations reading the external actions on the end-effector from
file, building the external actions matrix and transforming it from local to base frame.

• Steps (11) to (13) performs the dynamic calculations (i.e. evaluates the internal actions), and are
included in a for cycle where the counter i decreases from the total number of the robot’s links to
1.

• While the kinematic calculations iteratively develop from the base of the robot to the end-effector,
the dynamic calculations begin from the hand of the manipulator ending at the base.

• Note that all the matrices have been brought back to the base frame (steps (6), (7), (10), (11))
before executing the main operations (steps (8), (9), (12), (13)): this is not a set choice (one can
assume as reference any frame), but it seems the easiest approach.

The program has a very simple DATA OUTPUT just intended for its debug, therefore only the most signifi-
cant matrices are printed.

1It is important to remark that the only purpose of the above program is to give a simple example of the library use, so
that any programmer can find better programming solutions.



7.1. Program Rob Mat 81

7.1.3 Using ROB-MAT

As wider described above, ROB-MAT program requires as input:

• DATA FILE: file describing the geometry of the robot, its inertial parameters and the external actions;

• MOTION FILE: file containing, for every link, joint position, velocity and acceleration.

and as output:

• OUT FILE: file where ROB-MAT will print all the matrices describing the movements of the links and
the joint internal actions.

The program reads from the DATA FILE the description of the robot and from the MOTION FILE the motion
of its motors and it prints in OUT FILE file all the matrices describing the movements of the links and the
joint internal actions.
The three dimensional array which contain position, velocity and acceleration matrices, is realized with
the notation A(:, k), where the parameter (:, k) defines a “window” of four columns and all the rows
in the matrix (in fact k=4*i-3:4*i). So, A(:, k) corresponds to A(i), and A(:, k+4) corresponds to
A(i+1), because 4 is added to the subscript of each component of the vector k (see § 2.5).

Program Symbols Meaning
A[:,k] Relative location of the frame (i) with respect to frame (i− 1)
T[:,k] Absolute location of the frame (i) with respect to frame (0)
IT[:,k] Inverse of T[:,k]
W[:,k] Relative velocity matrix of the frame (i) with respect to frame (i−1) seen in frame

(i− 1)
WO[:,k] Relative velocity matrix of the frame (i) with respect to frame (i−1) seen in frame

(0)
WA[:,k] Absolute velocity matrix of the frame (i) with respect to frame (0) seen in frame

(0)
H[:,k] Relative acceleration of the frame (i) with respect to frame (i − 1) seen in frame

(i− 1)
HO[:,k] Relative acceleration of the frame (i) with respect to frame (i − 1) seen in frame

(0)
HA[:,k] Absolute acceleration of the frame (i) with respect to frame (0) seen in frame (0)

Hg Matrix including the three components of gravity acceleration seen in the absolute
frame (0)

Ht Sum of HA[:,k] and Hg
J[:,k] Mass distribution of the link (i) with respect to the origin of the frame (i) seen in

frame (i)
JO[:,k] Mass distribution of the link (i) with respect to the origin of the frame (0) seen in

frame (0)
FI[:,k] Actions (forces and torques) due to inertia and weight applied on link (i) seen in

(0)
ACTO[:,k] Matrix embodies the constraint actions on joint (i) seen in absolute frame (0)

Table 7.1: Meaning of the symbols used in the program ROB MAT

7.1.4 Listing of the program ROB MAT.M

%_____________________________________________________________________________________________

%

% ROB_MAT

%

% Program for the automatic solution of the direct kinematic problem and the inverse
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% dynamic problem for any serial manipulator. The program reads from a "description file

% (*.DAT)" the structure of the robot (number of links, lenghts, masses, joint type,ecc.),

% and from a " motion file (*.MOT)" the motors movement, and, as output, prints the motion

% (position, velocity, acceleration) of each link.

% (c) G.Legnani 1998 adapted from G.Legnani and R.Faglia 1990

%____________________________________________________________________________________________

clc

string1=input(’Digit the name of the input DATA FILE: ’,’s’);

data=fopen(string1,’r’);

if (data==-1)

error(’Error in ROB_MAT, unable to open DATA FILE ’)

end

string2=input(’Digit the name of the input MOTION FILE: ’,’s’);

motion=fopen(string2,’r’);

if (motion==-1)

error(’Error in ROB_MAT, unable to open the MOTION FILE ’)

end

string3=input(’Digit the name of the OUTPUT FILE (S=Screen): ’,’s’);

string3=upper(string3); % uppercase;

if (string3==’S’)

out=1;

else

out=fopen(string3,’wt’);

end

if (out==-1)

error(’Error in ROB_MAT, unable to open OUTPUT FILE ’)

end

nlink=fscanf(data,’%d’,1);

%_____INIZIALIZATIONS

T =eye(4,4*(nlink+1)); % MATRICES:

WA=zeros(4,4*(nlink+1));

HA=zeros(4,4*(nlink+1));

J =zeros(4,4*nlink);

W =zeros(4,4*nlink);

WO=zeros(4,4*nlink);

HO=zeros(4,4*nlink);

A =zeros(4,4*nlink);

theta=zeros([1,nlink]); % VECTORS:

jtype=zeros([1,nlink]);

a=zeros([1,nlink]);

b=zeros([1,nlink]);

alfa=zeros([1,nlink]);

for i=1:1:nlink % for each link (STEP 1)

kk=4*i-3;

k=[kk:kk+3];

jtype(i)=fscanf(data,’%d’,1); % Read Denavit & Hartenberg parameters

theta(i)=fscanf(data,’%f’,1);

s(i)= fscanf(data,’%f’,1);

b(i)= fscanf(data,’%f’,1);

a(i)= fscanf(data,’%f’,1);

alfa(i)= fscanf(data,’%f’,1);

m= fscanf(data,’%f’,1); % Read Dinamic Data

jxx=fscanf(data,’%f’,1);

jxy=fscanf(data,’%f’,1);

jxz=fscanf(data,’%f’,1);

jyy=fscanf(data,’%f’,1);

jyz=fscanf(data,’%f’,1);

jzz=fscanf(data,’%f’,1);

xg= fscanf(data,’%f’,1);

yg= fscanf(data,’%f’,1);

zg= fscanf(data,’%f’,1);
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J(:,k)=jtoj(m,jxx,jyy,jzz,jxy,jyz,jxz,xg,yg,zg);% Builds Inertia Matrix

end % end 1ST step

gx=fscanf(data,’%f’,1);

gy=fscanf(data,’%f’,1);

gz=fscanf(data,’%f’,1);

fx=fscanf(data,’%f’,1);

fy=fscanf(data,’%f’,1);

fz=fscanf(data,’%f’,1);

cx=fscanf(data,’%f’,1);

cy=fscanf(data,’%f’,1);

cz=fscanf(data,’%f’,1);

Hg=gtom(gx,gy,gz); % Builds gravity matrix

dt=fscanf(motion,’%f’,1);

%_______________________FOR EACH INSTANT OF TIME:__________________________

%___________________________DIRECT KINEMATICS______________________________

for time=0:dt:~feof(motion)

for i=1:1:nlink

kk=4*i-3;

k=[kk:kk+3];

q = fscanf(motion,’%f’,1);

qp = fscanf(motion,’%f’,1);

[qpp,count] = fscanf(motion,’%f’,1);

if count~=1

fclose(’all’);

return

end

% Builds relative position matrix (3)

A(:,k)=dhtom(jtype(i),theta(i),s(i),b(i),a(i),alfa(i),q);

% Builds relative velocity and acceleration matrix in local frame(4)

[ W(:,k),H(:,k) ]=veactowh(jtype(i),qp,qpp);

% Evaluates absolute position matrix (5)

T(:,k+4)=T(:,k)*A(:,k);

% Transform relative velocity matrix from local frame to base frame(6)

WO(:,k)=mami( W(:,k),T(:,k) );

% Transform relative acceleration matrix from local frame to base frame (7)

HO(:,k)=mami( H(:,k),T(:,k) );

WA(:,k+4)=WA(:,k)+WO(:,k); % Evaluates absolute velocity matrix (8)

% Evaluates absolute acceleration matrix (9)

HA(:,k+4)=coriolis(HA(:,k),HO(:,k),WA(:,k),WO(:,k));

end % end of cycle (kinematics)

%___________________SOLUTION OF THE INVERSE DINAMYC PROBLEM______________

EXT=actom(fx,fy,fz,cx,cy,cz);

ACTO(:,4*nlink+1:4*nlink+4)=mamt(EXT,T(:,4*nlink+1:4*nlink+4));

for kk=4*nlink:-4:4

k=[kk-3:kk];

JO(:,k)=mamt(J(:,k),T(:,k+4));

Ht=Hg-HA(:,k+4);

FI(:,k)=skew(Ht,JO(:,k));

ACTO(:,k)=FI(:,k)+ACTO(:,k+4);

end

%________________________OUTPUT RESULTS ______________________

if (string3==’S’) string3=’ SCREEN ’; end

fprintf(1,’\n\n-------- Print Output results on FILE: %s ----------\n’,string3 )

for i=1:1:nlink

kk=4*i-3;

k=[kk:kk+3];

fprintf(out,’\n\n Link %d \n\n’,i);

fprintm(out,’Relative Position Matrix A’, A(:,k));

fprintm(out,’Absolute Position Matrix T’, T(:,k+4));

fprintm(out,’Relative Velocity Matrix in frame (i) W’, W(:,k));

fprintm(out,’Relative Velocity Matrix in frame (0) WO’, WO(:,k));

fprintm(out,’Absolute Velocity Matrix in frame (0) WA’, WA(:,k+4));
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fprintm(out,’Relative Acceleration Matrix in frame (i) H’, H(:,k));

fprintm(out,’Relative Acceleration Matrix in frame (0)HO’, HO(:,k));

fprintm(out,’Absolute Acceleration Matrix in frame (0) A’, HA(:,k+4));

fprintm(out,’Inertia Matrix in frame (i) J’, J(:,k));

fprintm(out,’Inertia Matrix in frame (0) O’, JO(:,k));

fprintm(out,’Total actions FI’, FI(:,k));

fprintm(out,’Actions on Joint (i) ACTO’,ACTO(:,k));

end % end output results

end % end main loop

fclose(’all’); % close all files

7.1.5 Use of Rob-Mat

Example n.1: SCARA ICOMATIC03 c© ROBOT

Here is an example of the simulation of a 3 d.o.f. SCARA ICOMATIC03 c© ROBOT (see figure 7.2), de-
scribed in file SCARA.DAT, acting a trajectory of two points included in file SCARA. MOT. File SCARA.DAT

q
1

q
2

q
3

γ

(0)

(1)

(2)

Figure 7.2: Kinematic structure of the SCARA robot.

contains the geometry of the robot SCARA ICOMATIC03 c©, its inertial parameters and the external actions
on the gripper (see table 7.2). In the example the angle γ is considered constant (γ = 0) and so the x
axes of the two last frames are parallel to each other.
File SCARA.MOT includes the motion of the actuators of the robot, given in terms of displacement, speed
and acceleration (see table 7.3). In this example the law of motion is formed by two points only; obviously
the program is able to elaborate laws of motions composed by a larger number of points!
File SCARA.OUT includes the output matrices. They have not been printed here for the file is very long;
however they can be found in the BIGEXA directory of SpaceLib c©.

Example n.2: SMART c© ROBOT

Here is an example of the simulation of a SMART c© ROBOT (6 degrees of freedom) described in file
SMART.DAT acting a trajectory of only one point included in file SMART.MOT (see table 7.4 and figure 7.3).

File SMART.OUT includes the output matrices. It have not been printed here for the file is very long;
however they can be found in the BIGEXA directory of SpaceLib c©.

NOTE : The geometrical data of the robot links correspond to the actual robot, while the values of
the dynamical parameters have been estimated very approximatively.
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DATA FILE MEANING
SCARA.DAT

3 number of link

FIRST LINK

0 Joint type
0 0 0 0.33 0 Denavit and Hartenberg parameters
10 Mass of the first link
0.03 0 0 Inertia moments jxx, jxy, jxz
0.03 0 Inertia moments jyy, jyz
0.05 Inertia moments jzz
-0.05 0.0 0.0 Center of Mass coordinates Xg, Yg, Zg

SECOND LINK
0
0 0 0 0.33 0
10
0.03 0 0
0.03 0
0.05
-0.05 0 0

THIRD LINK (END-EFFECTOR)
1
0 -0.1 0 0 3.1415
3
0.0008 0 0
0.0008 0
0.0015
0 0 -0.10

EXTERNAL ACTIONS

0 0 -9.8 Gravity components in base frame (0)
0 0 0 0 0 0 External forces and torques applied on the end effector

Table 7.2: Content of the file SCARA.DAT

MOTION FILE MEANING
SCARA.MOT

0.05 dt

FIRST POINT
0 1 10 displacement, speed and acceleration of the first motor
0 2 20 displacement, speed and acceleration of the second motor
0 0 0 displacement, speed and acceleration of the third motor

SECOND POINT
0.1 1.1 11 displacement, speed and acceleration of the first motor
0.1 2.1 21 displacement, speed and acceleration of the second motor
0 0 0 displacement, speed and acceleration of the third motor

OTHERS POINT
. . .

Table 7.3: Content of the file SCARA.MOT
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Figure 7.3: Frames definition for SMART ROBOT.

DATA FILE
SMART.DAT

6

0
0 0.8 0 0 1.57079
600
100 0 0
120 0
100
0 -0.40 0

0
0 0 0 0.75 0
300
18 0 0
10 0
10
-0.30 0 0

0
0 0 0.5 0 -1.57079
200
10 0 0
10 0
18
0 0 -0.2

0
0 0.45 0 0 1.57079
100
3 0 0
5 0
3
0 -0.20 0

0
0 0 0.15 0 -1.57079
100
3 0 0
3 0
5
0 0 -0.07

0
0 0.0 0 0 0
200
4 0 0
4 0
6
0 0 -0.5

0 0 -9.8
0 0 0 0 0 0

MOTION FILE
SMART.MOT

0.05

0 0.5 2
1.57 0.5 2
-1.57 0.5 2

0 0.5 2
0.26 0.5 2
0 0.5 2

Table 7.4: Content of the files SMART.DAT and SMART.MOT
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Figure 7.4: The model of the human body con-
sidered in the references [8], [9], and [14]:: the
human joints are approximated by spherical or
revolute hinges.

neck

shoulder

elbow

wrist

knee

ankle

hip

Figure 7.5: Schematization of the spherical joints
by revolute hinges and enumeration of the degrees
of freedom. Number in parentheses refer to right
side. See section 7.2 for a simplified version of the
model.

7.2 Program Test

7.2.1 General information

This sample program demonstrates the use of dyn eq function for the solution of the direct dynamic
problem of a two-link system floating in the 3D space (see figure 7.6). In practice, the program predicts
the trajectory of the system. This is an educational simplification of the problem of finding the trajectory
of a man during a jump (or dive) widely described in [8], [9] and [14] to which one can refer for more
details. The program reads from a file (TEST.DAT) the links description (masses, inertias, ....) and from
another file (TEST.MOT) the motion of the motor and prints on the screen the trajectory of the two links
(position, velocity and acceleration matrices).

7.2.2 Theory in brief

The system (see figure 7.6) is free in the space and the relative position of the two links is forced by
a motor which imposes a motion law q(t), q̇(t), q̈(t). If the following data are known:

• inertia of the two links (J1 and J2)

• the initial position and velocity of body 1 (M0,1 and W0,1)

• the relative motion between the links (q, q̇ and q̈, and so M1,2, W1,2, H1,2)

then it is possible to evaluate the acceleration of link 1. This is what is necessary in order to obtain the
trajectory of the system by a numerical integration. More in detail the acceleration of body 1 is the sum
of two terms one of which is known while the other is the unknown.
The dynamic equation2 of the system is

Φg = skew
{

H0,1 · J1(0)

}
+ skew

{
H0,2 · J2(0)

}
= [0] (7.1)

2For the subscript convection see § 2.2.1.
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Figure 7.6: The system of the example test.

since the system is free in the space and it is not subjected to the gravity force, then Φg is the null matrix
[0]. The matrices describing the motion of the two bodies are related by the following relations:

• the acceleration of body 1 is the sum of two terms. The first is known, while the second is the unknown

H0,1 = W 2
0,1 + Ẇ0,1 (7.2)

• the position of body 2 is

M0,2 = M0,1 ·M1,2 M1,2 = M (q) (7.3)

• the velocity of body 2 is

W0,2 = W0,1 + W1,2(0) W1,2(0) = M0,1 ·W1,2 ·M−1
0,1 W1,2 = W(q̇) (7.4)

• the acceleration of body 2 is

H0,2 = H0,1 + H1,2(0) + 2 ·W0,1 ·W1,2(0) H1,2(0) = M0,1 ·H1,2 ·M−1
0,1 (7.5)

H1,2 = W 2
1,2 + Ẇ1,2 Ẇ1,2 = Ẇ (q̈) (7.6)

• the inertia of the two links can be expressed in base frame by the following relations

J1(0) = M0,1 · J1 ·M t
0,1 J2(0) = M0,2 · J2 ·M t

0,2 (7.7)

J1 and J2 are constant and their value is known, while M1,2, W1,2 and Ẇ1,2 can be easily evaluated by
knowing q(t), q̇(t) and q̈(t). At last M0,1 and W0,1 are known at the initial time t=0 and Ẇ0,1 will be
the result of the following calculation.

The dynamic equation (7.1) can be “exploded” by means of three successive steps:
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• union of the two terms
[0]= skew

{
H0,1 · J1(0) + H0,2 · J2(0)

}
(7.8)

• explosion of H terms

[0] = skew
{(

W 2
0,1 + Ẇ0,1

)
· J1(0) +

(
H0,1 + H1,2(0) + 2 ·W0,1 ·W1,2(0)

)
· J2(0)

}
(7.9)

• new explosion of H terms

[0] = skew
{(

W 2
0,1 + Ẇ0,1

)
· J1(0) +

((
W 2

0,1 + Ẇ0,1

)
+ H1,2(0) + 2 ·W0,1 ·W1,2(0)

)
· J2(0)

}
(7.10)

and then the terms contained in the skew operator are divided in order to separate the terms containing
the unknown Ẇ0,1 from the others.

skew
{
W 2

0,1 · J1(0) +
(
W 2

0,1 + H1,2(0) + 2 ·W0,1 ·W1,2(0)

)
· J2(0)

}
= skew

{
−Ẇ0,1 ·

(
J1(0) + J2(0)

)}
(7.11)

or shortly
= skew

{
−Ẇ0,1 · Jtot

}
(7.12)

with the positions
Jtot = J1(0) + J2(0)

Φ = skew
{
H∗

0,1 · J1(0) + H∗
0,2 · J2(0)

} (7.13)

where H∗
0,1 and H∗

0,2 are the “partial” acceleration of body 1 and 2 (i.e. their absolute acceleration
evaluated considering Ẇ0,1=[0])

H∗
0,1 = W 2

0,1 H∗
0,2 = H∗

0,1 + H1,2(0) + 2 ·W0,1 ·W1,2(0) (7.14)

equation (7.12) can be solved by using the dyn eq function of SpaceLib c©.

Then the total absolute acceleration of bodies 1 and 2 can be evaluated. It yields:

H0,1 = H∗
0,1 + Ẇ0,1 H0,2(0) = H∗

0,2 + Ẇ0,1 (7.15)

Although more raffinate integration methods can be set up, the new position and speed of link 1 at the
time (t+∆t) can be approximatively evaluated, for instance, by the simple following integration method

{
M0,1<t+∆t>

∼= M0,1 + Ṁ0,1∆t + 1
2M̈0,1∆t2 =

(
[1] + W0,1∆t + 1

2H0,1∆t2
)
M0,1 = ∆M ·M0,1

W0,1<t+∆t>
∼= W0,1 + Ẇ0,1∆t

with Ṁ0,1= W 0,1 ·M0,1

M̈0,1= H0,1 ·M0,1

∆M =
(
[1] + W0,1 ·∆t + 1

2 ·H0,1 ·∆t2
) [1]= identity matrix

(7.16)
All of these operations must be repeated iteratively in order to evaluate the trajectory of the system.

7.2.3 The program (cross reference)

The variables of the program have the meaning listed in table 7.5. The initial position and speed of
body 1 are assigned by initializing the matrices m1, W1.
The inertia matrices of the bodies are assigned by initializing the matrices J1 and J2.
The relative motion between the links is described by three variables q, qp, qpp (position, speed and
acceleration).
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Program Symbols Equation Symbols Meaning

q, qp and qpp q, q̇ and q̈ position, speed and acceleration of the motor
m1 M0,1 abs. position of body 1
W1 W0,1 abs. velocity of body 1 (in frame 0)

H1
{

H∗
0,1

H0,1

partial acceleration of body 1 (in frame 0)
absolute acceleration of body 1 (in frame 0)

Wp Ẇ0,1 Unknown part of acceleration of body 1
m2 M0,2 abs. position of body 2
W2 W0,2(0) abs. velocity of body 2 (in frame 0)

H2
{

H∗
0,2

H0,2

partial acceleration of body (in frame 0)
absolute acceleration of body 2 (in frame 0)

m12 M1,2 relative position of body 1 and 2
W12 W1,2 rel. velocity between body 1 and 2 (in frame 1)
H12 H1,2 rel. acceleration between body 1 and 2 (in frame 1)
W120 W1,2(0) rel. velocity between body 1 and 2 (in frame 0)
H120 H1,2(0) rel. acceleration between body 1 and 2 (in frame 0)
J1, J2, J10, J20, Jtot J1, J2, J1(0), J2(0),

Jtot

Inerzia

F1 skew
{
H∗

0,1 · J1(0)

}
+ skew

{
H∗

0,2 · J2(0)

}
F2 skew

{
H∗

0,2 · J2(0)

}
Table 7.5: Cross reference for the program TEST

7.2.4 Scheme of the program

The program consists of the following steps (letters and digits refer to the program source code listed
in the following pages).

1. Reads the description of the links and the initial condition (position and velocity) of link 1 from
file TEST.DAT.

2. For each instant

a) reads from file TEST.MOT the motion (q, q̇, q̈) of the motor.

b) evaluates m12, the relative position matrix of body one and two.

c) evaluates m2, the absolute position of body 2.

d) evaluates partial acceleration of link1: H1 = W1 · W1.
e) evaluates W12 and H12, the relative velocity and acceleration between the bodies.

f) evaluates W120 and H120 referring W12 and H12 to the reference frame.

g) evaluates absolute velocity W02 and partial acceleration of link 2 H02.

h) evaluates J10 and J20 referring J1 and J2 to the base frame.

i) evaluates Jtot = J10 + J20.

j) evaluates F2 = skew(H2, J20) and F1 = F2 + skew(H1, J10).

k) finds the unknown Wp by using the dyn eq function.

l) evaluates the total acceleration of links 1 & 2 H1 = H1 +Wp and H2 = H2 +Wp.

m) evaluate matrix dm: dm = [1] + W01 dt + 0.5 H01 dt2.

n) evaluates the new absolute position of link 1 (t = t+dt).

o) evaluates the new absolute velocity of link 1 (t = t+dt).
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DATA FILE MEANING
TEST.DAT

LINK 1
10 1 1 1 mass, Jx, Jy, Jz inertia moments
0 0 0 Jxy, Jyz, Jxz
1 0 0 Xg, Yg, Zg centre of mass position

LINK 2
10 1 1 1 mass, Jx, Jy, Jz inertia moments
0 0 0 Jxy, Jyz, Jxz
1 0 0 Xg, Yg, Zg centre of mass position

0 0 0 1 velocity matrix of link 1
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0 position matrix of link 1
0 1 0 0
0 0 1 0
0 0 0 1

Table 7.6: Content of the file TEST.DAT

3. Repeats steps a÷o until the motion file is completely scanned.

Note: An improved version of the program (TEST NEW) is also contained; it is based on the following
considerations.

• The angular moment of the system should be constant, but inaccuracy in the integration method
corrupts it. In this new version of the program, some statements have been added to preserve the
total angular momentum obtaining an improved final accuracy.

• At each integration step, the linear and angular momentum are evaluated and a velocity dW added
to each link of the system in order to set the value of the linear and angular momentum equal to
their initial value (G=G0 for t=0.)

7.2.5 The format of the inputfiles

The BIGEXA directory of SpaceLib c© contains an example of input files (TEST.DAT and TEST.MOT).
They are here listed in order to show their format. The input file TEST.DAT has the format listed in
table 7.6 while the law of motion file TEST.MOT has the format show in table 7.7. The first line of the file
TEST.MOT contains the time step dt, while the other lines contain the value of the motor position, speed
and acceleration ad each time.

7.2.6 Source code of TEST.M

%_____________________________________________________________________________________________

%

% PROGRAM TEST.M

%

% " Program for the trajectory prediction of a two-link system floating in the space".

%

% This program demonstrates the use of dyn_eq function for the solution of the direct dynamic

% problem of a two-link system floating in the 3-D space.

% The program predicts the trajectory of the system. The program reads from a file (TEST.DAT)

% the links description (mass, inertias, the coordinates of the centre of mass) and from

% another file (TEST.MOT) the motion of the motors, and prints on the screen the trajectory of
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MOTION FILE MEANING
TEST.MOT

0.002 dt (step of time)

0.000000E+00 0.000000E+00 0.000000E+00 q q̇ q̈ (t=0)
5.556963E-07 8.334976E-04 8.333988E-01 .. .. .. (t=dt)
4.444593E-06 3.334976E-03 1.665613 .. .. .. (t=2 ·dt)
1.499523E-05 7.494372E-03 2.495461 .. .. ..
3.552638E-05 1.331228E-02 3.321762
6.934328E-05 2.077827E-02 4.143342
... ... ...

Table 7.7: Content of the file TEST.MOT

% the two links.

% (c) G.Legnani and C.Moiola 1998 adapted from G.Legnani and R.Faglia 1990

%_____________________________________________________________________________________________

spheader

clc

% Initializations

Zax=Zaxis;

O=ORIGIN;

var=[1 1 1 1 1 1 ; 0 0 0 0 0 0];

Wp=NULL4;

% Open description file

fil=fopen([spc_lib_dir_b,’\test.dat’],’r’);

if (fil==-1)

error(’Error on input file TEST.DAT ’)

end

out=input(’output to screen? (1=yes)’);

if (out~=1)

outfile=[’testoutold.out’];

out=fopen(outfile,’wt’);

end;

if (out==-1)

error(’Error in TEST.M: Unable to open output file ’)

end

% Read description of the links step(1)

m= fscanf(fil,’%f’,1);

jxx=fscanf(fil,’%f’,1); jyy=fscanf(fil,’%f’,1); jzz=fscanf(fil,’%f’,1);

jxy=fscanf(fil,’%f’,1); jyz=fscanf(fil,’%f’,1); jxz=fscanf(fil,’%f’,1);

xg= fscanf(fil,’%f’,1); yg= fscanf(fil,’%f’,1); zg= fscanf(fil,’%f’,1);

% Builds Inertia Matrix of link 1

J1=jtoj(m,jxx,jyy,jzz,jxy,jyz,jxz,xg,yg,zg);

m= fscanf(fil,’%f’,1);

jxx=fscanf(fil,’%f’,1); jyy=fscanf(fil,’%f’,1); jzz=fscanf(fil,’%f’,1);

jxy=fscanf(fil,’%f’,1); jyz=fscanf(fil,’%f’,1); jxz=fscanf(fil,’%f’,1);

xg= fscanf(fil,’%f’,1); yg= fscanf(fil,’%f’,1); zg= fscanf(fil,’%f’,1);

% Builds Inertia Matrix of link 2

J2=jtoj(m,jxx,jyy,jzz,jxy,jyz,jxz,xg,yg,zg);

% Read initial condition of the system

W1= fscanf(fil,’%f’,[4 4]); % Read velocity matrix of link 1

W1=W1’;

m1= fscanf(fil,’%f’,[4 4]); % Read position matrix of link 1

m1=m1’;

% Open motion file

fil=fopen([spc_lib_dir_b,’\test.mot’],’r’);

if (fil==-1)
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error(’Error on motion file TEST.MOT ’)

end

dt=fscanf(fil,’%f’,1); % Read integration step "dt"

for t=0:dt:(~feof(fil)) % Loop for each istant of time step(2)

q =fscanf(fil,’%f’,1); % Read motion of motor (a)

qp =fscanf(fil,’%f’,1);

[qpp,count]=fscanf(fil,’%f’,1);

if (count~=1) % Check end of motion file. If motion file is empty -> end of loop

return

end

m12=screwtom(Zax,q,O,0); % Relative position of link 1 & 2 (b)

m2=m1*m12; % Absolute position of link 2 (c)

H1=W1^2; % Partial acceleration of link 1 (d)

[W12,H12]= vactowh2(Rev,Z,qp,qpp); % Rel. vel & acc. of link 1&2 (e)

W12O=mami(W12,m1); % (f)

H12O=mami(H12,m1);

W12O(1:3,1:3)=normskew(W12O(1:3,1:3),SKEW_); % normalization reducing num. error

W2=W1+W12O; % Abs.vel.and partial acceleration of link 2(g)

H2=coriolis(H1,H12O,W1,W12O);

J1O=mamt(J1,m1); % Referinertia moments to absolute frame

J2O=mamt(J2,m2);

J1O=normskew(J1O,SYMM_); % normalization reducing num. error

J2O=normskew(J2O,SYMM_); % normalization reducing num. error

Jtot=J1O+J2O; % Total inertia (i)

F1=skew(H1,J1O); % Evaluate inertia actions (j)

F2=skew(H2,J2O);

F=F1+F2;

[Wp,ff,exitcode]=dyn_eq(Jtot,Wp,F,var);% Evaluate Wp (k)

if (exitcode==NOTOK)

fprintf(’\n\n exitcode= %d \n\n’,exitcode);

return;

end

H1=H1-Wp;

H2=H2-Wp; % Absolute acceleration of link 1 & 2 (l)

% ------------ Print output results ----------

fprintf(out,’\n\n--- time:%4.3f q: %9.6E qp: %6.5E qpp: %6.4f\n\n’,t,q,qp,qpp);

fprintm(out,’ Position matrix of link 1’, m1);

fprintm(out,’ Absolute position matrix of link 2’, m2);

fprintm(out,’ Velocity matrix of link 1’, W1);

fprintm(out,’ Absolute velocity matrix of link 2’, W2);

fprintm(out,’ Acceleration matrix of link 1’, H1);

fprintm(out,’ Absolute acceleration matrix of link 2’,H2);

if (out==1)

pause;

else

fprintf(1,’\n\n--- time:%4.3f q: %9.6E qp: %6.5E qpp: %6.4f\n\n’,t,q,qp,qpp);

end

dm=UNIT4 + W1*dt + 0.5 * H1*dt^2; % Builds matrix dm = [1] + Wdt + 1/2 H dt^2 (m)

dm=normal(dm);

m1=dm*m1; % New position of link 1 (n)

W1 =W1+Wp*dt; % New velocity of link 1 (o)

end % end of main loop

fclose(’all’)

7.2.7 Source code of TEST NEW.M

%_____________________________________________________________________________________________

%

% PROGRAM TEST_NEW.M

%

% " Program for the trajectory prediction of a two-link system floating in the space".

%
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% This program demonstrates the use of dyn_eq function for the solution of the direct dynamic

% problem of a two-link system floating in the 3-D space. The program predicts the trajectory

% of the system. This is an improved version of Test.m. The angular moment of the system should

% be constant, but inaccuracy in the integration method corrupt it. In this version, some

% statments have been added to preserve the total angular momentum obtaining an improved final

% accuracy. At each integration step the angular momentum is evaluated and a velocity dW is

% added to the system in order to set the value of the angular momentum equal to its initial

% value (G=Go for t==0.) The program reads from a file (TEST.DAT) the links description (mass,

% inertias, the coordinates of the centre of mass) and from another file (TEST.MOT) the motion

% of the motors, and prints on the screen the trajectory of the two links.

%

% (c) G.Legnani and C.Moiola 1998 adapted from G.Legnani and R.Faglia 1990

%_____________________________________________________________________________________________

spheader

clc

% Initializations

Zax=Zaxis;

O=ORIGIN;

var=[1 1 1 1 1 1 ;

0 0 0 0 0 0];

Wp=NULL4;

W0=NULL4;

% Open description file

fil=fopen([spc_lib_dir_b,’\test.dat’],’r’);

if (fil==-1)

error(’Error on input file TEST.DAT ’)

end

out=input(’output to screen? (1=yes)’);

if (out~=1)

outfile=[spc_lib_dir_b,’\testout.out’];

out=fopen(outfile,’wt’);

end;

if (out==-1)

error(’Error in TEST.M: Unable to open otput file ’)

end

% Read description of the links step(1)

m= fscanf(fil,’%f’,1);

jxx=fscanf(fil,’%f’,1); jyy=fscanf(fil,’%f’,1); jzz=fscanf(fil,’%f’,1);

jxy=fscanf(fil,’%f’,1); jyz=fscanf(fil,’%f’,1); jxz=fscanf(fil,’%f’,1);

xg= fscanf(fil,’%f’,1); yg= fscanf(fil,’%f’,1); zg= fscanf(fil,’%f’,1);

% Builds Inertia Matrix of link 1

J1=jtoj(m,jxx,jyy,jzz,jxy,jyz,jxz,xg,yg,zg);

m= fscanf(fil,’%f’,1);

jxx=fscanf(fil,’%f’,1); jyy=fscanf(fil,’%f’,1); jzz=fscanf(fil,’%f’,1);

jxy=fscanf(fil,’%f’,1); jyz=fscanf(fil,’%f’,1); jxz=fscanf(fil,’%f’,1);

xg= fscanf(fil,’%f’,1); yg= fscanf(fil,’%f’,1); zg= fscanf(fil,’%f’,1);

% Builds Inertia Matrix of link 2

J2=jtoj(m,jxx,jyy,jzz,jxy,jyz,jxz,xg,yg,zg);

% Read initial condition of the system

W1= fscanf(fil,’%f’,[4 4]); % Read velocity matrix of link 1

W1=W1’;

m1= fscanf(fil,’%f’,[4 4]); % Read position matrix of link 1

m1=m1’;

% Open motion file

fil=fopen([spc_lib_dir_b,’\test.mot’],’r’);

if (fil==-1)

error(’Error on motion file TEST.MOT ’)

end

dt=fscanf(fil,’%f’,1); % Read integration step "dt"

for t=0:dt:(~feof(fil)) % Loop for each istant of time step(2)

q =fscanf(fil,’%f’,1); % Read motion of motor (a)
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qp =fscanf(fil,’%f’,1);

[qpp,count]=fscanf(fil,’%f’,1);

% Check end of motion file. If motion file is empty -> end of loop

if (count~=1)

return

end

m12=screwtom(Zax,q,O,0); % Relative position of link 1 & 2 (b)

m2=m1*m12; % Absolute position of link 2 (c)

% step (d) moved forward

[W12,H12]= vactowh2(Rev,Z,qp,qpp); % Rel. vel & acc. of link 1&2 (e)

W12O=mami(W12,m1); % (f)

H12O=mami(H12,m1);

W12O(1:3,1:3)=normskew(W12O(1:3,1:3),SKEW_);% normalization reducing num. error

W2=W1+W12O; % Absolute velocity of link 2 (g1)

% evaluation of partial acceleration moved forward

J1O=mamt(J1,m1); % Refer inertia moments to absolute frame

J2O=mamt(J2,m2);

J1O=normskew(J1O,SYMM_); % normalization reducing num. error

J2O=normskew(J2O,SYMM_); % normalization reducing num. error

Jtot=J1O+J2O; % Total inertia (i)

%---- preserve total angular momentum

G1=skew(W1,J1);

G2=skew(W2,J2);

G=G1+G2;

if (t==0) Go=G; end;

[dW,G,exitcode]=dyn_eq(Jtot,W0,G-Go,var);

W1=W1-dW; % correct velocity

W2=W2-dW;

%----

H1=W1^2; % Partial acceleration of link 1 (d)

H2=coriolis(H1,H12O,W1,W12O); % Partial acc. of link 2 (g2)

F1=skew(H1,J1O); % Evaluate inertia actions (j)

F2=skew(H2,J2O);

F=F1+F2;

[Wp,ff,exitcode]=dyn_eq(Jtot,Wp,F,var); % Evaluate Wp (k)

if (exitcode==NOTOK)

fprintf(’\n\n exitcode= %d \n\n’,exitcode);

return;

end

H1=H1-Wp;

H2=H2-Wp; % Absolute acceleration of link 1 & 2 (l)

% ------------ Print output results ----------

fprintf(out,’\n\n--- time:%4.3f q: %9.6E qp: %6.5E qpp: %6.4f\n\n’,t,q,qp,qpp);

fprintm(out,’ Position matrix of link 1’, m1);

fprintm(out,’ Absolute position matrix of link 2’, m2);

fprintm(out,’ Velocity matrix of link 1’, W1);

fprintm(out,’ Absolute velocity matrix of link 2’, W2);

fprintm(out,’ Acceleration matrix of link 1’, H1);

fprintm(out,’ Absolute acceleration matrix of link 2’,H2);

if (out==1)

pause;

else

fprintf(1,’\n--- time:%4.3f q: %9.6E qp: %6.5E qpp: %6.4f\n’,t,q,qp,qpp);

end

% Builds matrix dm = [1] + Wdt + 1/2 H dt^2 (m)

dm=UNIT4 + W1*dt + 0.5 * H1*dt^2;

dm=normal(dm);

m1=dm*m1; % New position of link 1 (n)

W1 =W1+Wp*dt; % New velocity of link 1 (o)

end % end of main loop

fclose(’all’)
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7.3 Rototranslation

In this paragraph it is shown how to calculate the rototranslation (i.e. the axis of rototranslation)
of the triangle which passes from the position (1) to the position (2) as in figure 7.7: Point P1 moves to

P1

P3

P2

P4

P6

P5

Figure 7.7: The frames definition for the example of rototranslation.

P4, P2 moves to P5, P3 moves to P6. The frame attached to the triangle moves from X1Y1Z1 to X2Y2Z2.
The position matrix of frame (2) with respect to reference frame (0) and of frame (0) with respect to (1)
are

M1,0=


1 0 0 0
0 1 0 −1
0 0 1 −2
0 0 0 1

 M0,2=


0 1 0 3
−1 0 0 0
0 0 1 2
0 0 0 1

 (7.17)

and the desired rototranslation matrix is

Q0 = M0,2 ·M1,0=


0 1 0 2
−1 0 0 0
0 0 1 0
0 0 0 1

=

 R T

0 0 0 1

 (7.18)

The rotation is clearly a rotation of π/2 about an axis anti-parallel to Z0. Using SpaceLib c© this result
can be obtained with the following statements
spheader
clc
P1=[0 1 2 1 ]’;
P2=[0 6 2 1 ]’;
P3=[0 1 6 1 ]’;
P4=[3 0 2 1 ]’;
P5=[8 0 2 1 ]’;
P6=[3 0 6 1 ]’;
m01=frame4p(P1,P2,P3,Y,Z);
m02=frame4p(P4,P5,P6,Y,Z);
m10=invers(m01);
Q=m02*m10;
[u,fi,P,h]=mtoscrew(Q);

It gives the result:

Rotation angle phi = π/2 = 1.57079
Axis direction u = [0 0 -1]t

Point P = [1 -1 0 1]t

Translation h = 0
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7.4 Scara robot

7.4.1 Theory in brief

This example shows how to solve the direct
kinematic problem for the position and velocity of
the Scara robot.

There are five reference frames. Frame (0) is
the fixed frame, frame (1) is attached to the base
while frames (2), (3) and (4) are embedded in link
1, 2 and 3 respectively. The auxiliary frame (a) is
a moving frame whose origin is in the center of the
gripper and whose axes are parallel to the reference
frame (0).
The program described in § 7.4.2 is based on the
conventions of the figure 7.4.1. The 1st link of this
Scara robot is 1.5 m long, while the 2nd and the
3rd link are 0.33 m long. Its joint variables Q and
the first time derivative Q̇ of Q is

Q = [α, β, h∗] =
[
π

4
,
π

6
,
1
2

]
Q̇ =

[
5π

4
,
5π

4
,
−1
2

]

The position of frame (a) referred to frame (0) is

expressed by the matrix

M0,a=


1 0 0 0.319
0 1 0 0.552
0 0 1 1
0 0 0 1

 (7.19)

The velocity matrix of the center of the gripper in
reference (0) is

W0,4(0)=


0 −7.854 0 0.916

7.854 0 0 −0.916
0 0 0 −0.5
0 0 0 0

 (7.20)

The velocity matrix of the gripper in reference
frame (a) is

W0,4(a) = Ma,0 ·W0,4(0) ·M0,a= (7.21)

=


0 −7.854 0 −3.420

7.854 0 0 1.587
0 0 0 −0.5
0 0 0 0



Figure 7.8: The frames definition for the example of robot Scara.
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7.4.2 Listing of the program ROBSCARA.M

%---------------------------------------------------------------------------------------------

% ROBSCARA.M: Sample program for direct kinematics of Scara robot

% (See User’s Manual)

%

% University of Brescia

% Mechanical Eng. Department

% Via Branze 38

% 25123 BRESCIA - ITALY

%

% giovanni.legnani@ing.unibs.it

%---------------------------------------------------------------------------------------------

spheader

clc

q = [pi/4 pi/6 0.5]; % joint variables array

qp= [pi*5/4 pi*5/4 -0.5]; % joint var. first time derivative

O=ORIGIN;

O1=[0 0 1.5 1]’; % origin of frame 1 in frame 0

O2=[0.33 0. 0 1]’; % origin of frame 2 in frame 1

O3=[0.33 0. 0 1]’; % origin of frame 3 in frame 2

O4=[0 0 -0.5 1]’; % origin of frame 4 in frame 3

Oa=[0. 0 1.5 1]’; % origin of frame a in frame 0

m01=rotat34(Z,0,O1); % builds relative position matrices

m12=rotat34(Z,q(1),O2);

m23=rotat34(Z,q(2),O3);

m34=rotat34(Z,0,O4);

m02=m01*m12; % builds absolute position matrices

m03=m02*m23;

m04=m03*m34;

m0a=idmat(4); % builds position matrix of frame

Oa=m04(:,4); % (a) in frame (0)

m0a(:,4)=Oa;

L12r=makel2(Rev,Z,0,O); % builds relative L matrices

L23r=makel2(Rev,Z,0,O);

L34r=makel2(Pri,Z,0,O);

L12f= mami(L12r,m01); % evaluate L matrices in frame (0)

L23f= mami(L23r,m02);

L34f= mami(L34r,m03);

W01=zeros(4);

% builds relative velocity matrices

W12=L12f*qp(1);

W23=L23f*qp(2);

W34=L34f*qp(3);

W04=W01+W12+W23+W34; % builds abs. W matrix of frame 4 in frame 0

W04a=miam(W04,m0a); % Evaluates W matrix of frame 4 in frame (a)

printm(’ The absolute position matrix of the gripper is: M04’, m04);

printm(’ The position matrix of frame "a" referred to frame "O" is: M0a’, m0a);

printm(’ The velocity matrix of the gripper in frame (0) is: W04’, W04);

printm(’ The velocity matrix of the gripper in frame (a) is: W04a’, W04a);
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7.5 Satellite

7.5.1 General information

This sample program demonstrates the use of several SpaceLib c© functions described in this manual
for the solution of a real problem. In practice, the program calculates how to obtain the best movement
to spread out the antennas from a satellite.

7.5.2 Theory in brief

7.5.2.1 The problem For the installation of a satellite,
launched with the rocket Ariane, it’s necessary to spread
out two antennas. During the launching phase, the
antennas are bent and they are positioned as in fig.1 inside
figure 7.13. When the service orbit has been reached,
the antennas are spread out and they are oriented as in
fig.2 inside figure 7.13. Each antenna reaches the service
position through three subsequent rotations; considering
the left antenna, these rototranslations are:

1) a rotation θ1 around an axis passing through the point
P2 and orthogonal to the plane P1-P2-P3: with this
rotation the point P1 of the antenna is aligned with
the diagonal P3-P2 (fig.3 inside fig.7.13);

Figure 7.9: Dimensions of the rocket.

Figure 7.10: Antennas in the initial position.

2) a rotation θ2 around an axis which
coincides with the diagonal P2-P3

and which puts the concavity up-
wards (fig.4 and 5 inside figure 7.13);

3) a rotation θ3 of 26˚ around an axis
orthogonal to the diagonal; this ro-
tation moves the antenna to its final
configuration (fig.5 and 6 inside fig-
ure 7.13).

The problem was to work out if the an-
tenna could be put in the correct position
by means of just one single rototranslation.

7.5.2.2 The solution For geometrical properties is known that any combination of two or more rota-
tions about the same point is equivalent to a “global” rotation. The following statements show how to
evaluate the global rotation which allows to put in position each antenna with one single rotation move-
ment. That’s why just below are calculated the rototranslation axes of each antenna (direction cosines
and a point of the axis), the rotation angles and the translations about these axes. The real dimensions
of this satellite are presented in the figure 7.9, which also shows the reference frame of the rocket and
the frame embedded on the antenna (initial position) (figures 7.9 and 7.10). Point P1 is the center of left
antenna, while point P2 approximates the location of the hinge. Point P2 can be ∼= 0.2 m higher or 0.3 m
lower than the edge of the box. P2 can also be ∼= 0.1 m outside the box. Angles α and β do not change
during the whole movement, therefore they can be calculated by means of the following statements

α = atan2((3.2-1.5), (1.75/2)) = atan2 (1.7, 0.875) = 62.76˚ = 1.0953 rad
β = atan2 (2.1, 1.75) = 50.19˚ = 0.8759 rad
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The sequence from the initial configuration to the
final one is made up by the following steps:

• Initial configuration The initial position ma-
trix of the frame of the left antenna is ex-
pressed by the matrix

Mi=


1 0 0 0.875
0 0 1 2.1
0 −1 0 1.5
0 0 0 1

 (7.22)

• Step 1

The left antenna turns about axis Z2, which
is orthogonal to the plane containing points
P1, P2, P3; point P1 (the center of the an-
tenna) get aligned with P2 and P3. The right
antenna turns about Z1, which is orthogonal
to the PA, PB, PC plane.

Figure 7.11: Step 1 of the antennas deployment.

• Step 2

Both antennas have reached the right posi-
tion relative to their feeds, which are locked
onto antennas. The subreflectors still have
to deploy and the antennas still have to com-
plete their rotations.

Figure 7.12: Step 2 of the antennas deployment.

Figure 7.13: The phases of the antennas deploy-
ment.
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• Step 3

The antennas have completed their rotations (reference lines are on spacecraft top diagonal d1 and
d2). The subreflectors have deployed and reached right positions relative to antennas and feeds.
They are locked onto feeds. The new position of point P1 is now:

P1 (x) = P2 (x) +d · cosβ
P1 (y) = P2 (y) +d · sinβ
P1 (z) = P2 (z)

(7.23)

while d is evaluated from figure 7.9 as the distance between P2 and P1. The z axis of the moving
frame is now pointing upwards (parallel to the rocket frame) while the direction of the others is
presented in figure 6 inside figure 7.13. The position of the center of the left antenna at the end of
step 3 is expressed by the following matrix

M3=


− cos(α+β) sin(α+β) 0 2.97
− sin(α+β) − cos(α+β) 0 3.57

0 0 1 3.20
0 0 0 1

=


0.3899 0.9208 0 2.97
−0.9208 0.3899 0 3.57

0 0 1 3.20
0 0 0 1

 (7.24)

Figure 7.14: Step 3 of the antennas deployment.

• Step 4

The antennas are turned face up
through rotations of 180˚ about
diagonals (d1 and d2).

Figure 7.15: Step 4 of the antennas deployment.

The position of the center of the left antenna at the end of step 4 is expressed by the following matrix

M4=


− cos(β−α) − sin(β − α) 0 2.97
− sin(β − α) cos(β − α) 0 3.57

0 0 −1 3.20
0 0 0 1

=


−0.976 0.218 0 2.97
0.218 0.976 0 3.57

0 0 −1 3.20
0 0 0 1

 (7.25)
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• Step 5

The antennas are filled 26˚
up to reach the working con-
figurations, through a rota-
tion about axes n1-n1 (axes
n1-n1 and n2-n2 are normal
to axes d1-d1 and d2-d2).
The unit vector of the rotation
axis (d1-d1) has the following
cosines

ux = sin(β) = 0.768

uy = − cos(β) = −0.640

uz = 0

Figure 7.16: Step 5 of the antennas deployment.

The rotation axis passes through point P2 and there is no translation along the axis.
So the Rototranslation matrix is

Q5=


0.959 −0.050 −0.281 1.075
−0.050 0.940 −0.337 1.290
0.281 0.337 0.899 −0.874

0 0 0 1

 (7.26)

• Final configuration

The final position of the left antenna is expressed by the following matrix

Mf= Q5 ·M4=


−0.946 0.160 0.281 2.850
0.253 0.907 0.337 3.420
−0.201 0.390 −0.899 4.038

0 0 0 1

 (7.27)

The aim has now been reached:
the Rototranslation matrix which expresses the whole movement can be written as

Qtot= Mf ·M−1
i =


−0.946 0.281 −0.160 3.329
0.253 0.337 −0.907 3.852
−0.201 −0.899 −0.390 6.686

0 0 0 1

 (7.28)

From this matrix we can extract the axis unit vector whose cosines are

ux = 0.1633 uy = 0.8175 uz = -0.5523

A point of the Rototranslation axis is P2 = [1.712, 1.908, 3.330, 1]t.

The rotation angle is 178.58˚ and there is no translation along the axis.

A program which performs and prints on the screen the presented calculations is listed in § 7.5.3.
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7.5.3 Source code of SAT

(c) G.Legnani and D.Manara 2004 adapted from (c) G.Legnani 1998 and (c) G.Legnani and R.Faglia
1990

%___________________________________________________________________________

%

% SAT.M

%

% Solution of the application example SAT described in the SPACELIB user’s

% manual (page 113). This program evaluate the parameters of the

% rototraslation necessary to orientate an antenna mounted on a space

% satellite.

%

% (c) G.Legnani 1998 adapted from (c) G.Legnani and R.Faglia 1990

%___________________________________________________________________________

spheader

% Values of initial configuration

P1=[ 0.875 2.1 1.5 1]’;

P2=[ 1.75 2.1 3.2 1]’;

mi=[ 1 0 0 0.875; 0 0 1 2.1; 0 -1 0 1.5; 0 0 0 1];

alpha=atan2( P2(Z)-P1(Z) , P2(X)/2 );

beta= atan2( P2(Y),P2(X) );

sb=sin(beta); cb=cos(beta);

sb_a=sin(beta-alpha); cb_a=cos(beta-alpha);

d=distp(P1,P2);

m4(X,X)=-cb_a; m4(X,Y)=-sb_a; m4(X,Z)=0; m4(X,U)=P2(X)+d*cb;

m4(Y,X)=-sb_a; m4(Y,Y)= cb_a; m4(Y,Z)=0; m4(Y,U)=P2(Y)+d*sb;

m4(Z,X)=0; m4(Z,Y)=0; m4(Z,Z)=-1; m4(Z,U)=P2(Z);

m4(U,X)=0; m4(U,Y)=0; m4(U,Z)=0; m4(U,U)=1;

% STEP 5

u5=[sb -cb 0]’;

Q5=screwtom(u5,rad(26),P2,0);

% Final Configuration

mf=Q5*m4;

% Rototraslation

miinv=invers(mi);

Qtot=mf*miinv;

[utot,fi,P,h]=mtoscrew(Qtot);

clc

% ----- PRINT OUTPUT RESULTS

fprintf(1,’\n\n-------------------------- Results ------------------------------\n’);

printm(’The rototraslation axis u is : ’,utot);

fprintf(1,’\n The rotation angle along axis u is: %3.3f [deg] %2.3f [rad]’,deg(fi),fi)

fprintf(1,’\n\n The traslation along the axis u is : %3.3f\n’, h)

printm(’The point P of the axis is: ’,P)
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7.6 Elbow robot

7.6.1 General information

Three different sample programs are described. They deal with the kinematics of a serial manipulator
and present the use of many SpaceLib c© functions. The robot under study is a 6 d.o.f. Elbow robot (see

Figure 7.17: Kinematic structure of the Elbow robot.

[16], [3]). The robot has six revolute joints. This section contains two programs obtained with different
approaches for the study of the direct kinematics of the robot (ELB D DH and ELB D PA) and one based on
a numerical approach for the inverse kinematics (ELB I DH). The two programs for the direct kinematics
accept the same input and produce identical output. The programs for the direct kinematics evaluates
the gripper motion starting from the joint motions, while the program for the inverse kinematics is able
to evaluate the joint motions necessary to produce an assigned gripper motion. The output file of the
program for the inverse kinematics can be used as input for the programs for the direct kinematics and
vice versa. These facts are summarized in the scheme of figure 7.18. In the previous scheme gripper1.mot

joint.mot

Gripper1.mot

Gripper2.mot

Elb_d_dh

Elb_d_pa

Gripper1.mot = Gripper2.mot

Elb_i_dh Elb_d_dhGripper1.mot Gripper1.motJoint2.motElb_d_dhJoint1.mot

Figure 7.18: Input output files for Elbow robot

is identical to gripper2.mot. Since a robot can have many inverse solutions the program evaluates just
one of them and in the scheme joint1.mot could be different from joint2.mot.
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7.6.2 Format of the data and motion files

The SpaceLib c© contains an example of input/output files (ELBOW.DAT, JOINT.MOT, GRIPPER.MOT and
GUESS.1ST) for the described programs. Their format is presented in table 7.8. The input file ELBOW.DAT

ELB D DH
ELB D PA

ELB I DH

ELBOW.DAT Input Input
JOINT.MOT Input Output
GRIPPER.MOT Output Input
GUESS.1ST Not used Input

Table 7.8: Input/Output files for the ELBOW ROBOT

which describes the link lengths has the format show in table 7.10 The file JOINT.MOT which describes the
joint motions has the format described in table 7.9. The file GRIPPER.MOT which describes the gripper

JOINT.MOT Meaning
0.01 dt

0.00114 0.25450 28.27440 Rotation, speed, acceleration of 1st motor
0.00106 0.23560 26.17990 Rotation, speed, acceleration of 2nd motor
0.00153 0.33930 37.69910 Rotation, speed, acceleration of 3rd motor
-0.00153 -0.33930 -37.69910 Rotation, speed, acceleration of 4th motor
0.00358 0.79520 88.35730 Rotation, speed, acceleration of 5th motor
0.02863 6.36170 706.85828 Rotation, speed, acceleration of 6th motor

0.00510 0.53720 28.27440 Rotation, speed, acceleration of 1st motor
0.00473 0.49740 26.17990 Rotation, speed, acceleration of 2nd motor
... ... ... . . . .

Table 7.9: Content of the file JOINT.MOT

ELBOW.DAT Meaning
1.5 length of link 1
0.8 length of link 2
0.8 length of link 3
0.2 Length of link 4
0.0 Length of link 5
0.2 Length of link 6

Table 7.10: Content of the file ELBOW.DAT

motion has the format specified by the table 7.11 where α, β, γ denote the gripper orientation using an
appropriate Cardan/Euler convention; X, Y , Z are the gripper position Single quote and double quote
mark the time derivative. The file GUESS.1ST contains the value of the joint rotations for the first guess
when solving the inverse kinematics problem. It has the simple format of table 7.12.

7.6.3 The file Joint.mot

This section describes the criteria under which the sample file JOINT.MOT has been created3. To
study the robot movement, for each link a symmetrical law of motion at constant acceleration of the kind

3The first point of the joint motions hasn’t been stored in JOINT.MOT because the robot is in a singular configuration at
time t=0.
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GRIPPER.MOT Meaning
0.01 dt
0 1 2 Cardan/Euler convention used X=0, Y=1, Z=2 for

compatibility with the C-language version
0.029690 0.000136 0.004718 α, β, γ, t=0
6.597086 0.060601 1.048386 α’, β’, γ’
732.919800 20.197580 115.902000 α”, β”, γ”
0.197946 1.800940 1.503133 X, Y, Z
-0.459088 0.207974 0.695856 X’, Y’, Z’
-51.222855 22.670288 77.394531 X”, Y”, Z”

0.132292 0.002702 0.020876 α, β, γ, t=dt
13.918917 0.567294 2.161054 α’, β’, γ’
. . . .. . . . .. . . . .. . . . ..

Table 7.11: Content of the file GRIPPER.MOT

GUESS.1ST Meaning
.0 .1 .2 .0 .1 .0 q1 q2 q3 q4 q5 q6

Table 7.12: Content of the file GUESS.1ST

1/3 -1/3 -1/3 has been considered (see. figure 7.19). The notation 1/3 -1/3 -1/3 indicates that the movements
consist of three parts (acceleration, constant speed, deceleration) of identical duration. The joint motions
are stored with a time step ∆T=0.01 seconds.

Figure 7.19: The law of motion contained in file JOINT.MOT.

7.6.4 Direct kinematics

The two sample programs here presented are: ELB D DH and ELB D PA; the first one is based on the
Denavit & Hartemberg notation [1] and the relative frames are positioned according to figure 7.20 while
the second one is very similar but the relative frames are positioned as described in figure 7.21. The two
programs accept the same input files and produce identical output.

Both programs display the gripper motion to the screen using the position, the velocity and the
acceleration matrices. Velocity and acceleration are expressed in a auxiliary frame (parallel to the base
frame) whose origin is in the TCP (gripper center). The auxiliary frame is not shown in the figures. The
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base frame Xa, Y a, Za and the gripper frame Xb, Y b, Zb are identical for the two programs, while the
intermediate frames have been positioned using different approaches.

The gripper motion is also stored in a output file. The gripper position is represented by the TCP posi-
tion, velocity and acceleration, while the orientation is stored as Cardan angles and their time derivatives;
the chosen sequence of rotation is rot X, rot Y , rot Z (see also § 3.2).

7.6.5 The sample program ELB D DH

Frame positions

Figure 7.20: Frames definition for the example of elbow robot with the program ELB D DH.

The base frame is Xa, Ya, Za which does not move with respect to X0, Y0, Z0. The gripper frame Xb,
Yb, Zb does not move with respect to X6, Y6, Z6. The reference frames from X1, Y1, Z1 to X6, Y6, Z6
attached to the links are positioned following the Denavit and Hartenberg convention (see also [1]) and
so at the end of the links.

The program ELB D DH

%______________________________________________________________________________________________

%

% ELB_D_DH.M

% Program for the DIRECT kinematics of ELBOW robot. Frames assigned according to Denavit and

% Hartenberg conventions. The output of this program is compatible with the input of elb_i_dh.c

% The input of this program is compatible with the output of elb_i_dh.c

% Input file: ELBOW.DAT and JOINT.MOT.

% Output file: GRIPPER.MOT

% (c) G. Legnani, C. Moiola 1998

%______________________________________________________________________________________________

spheader

MAXLINK=6;

clc

ii=X; % Euler/Cardan convention

jj=Y; % for gripper

kk=Z; % angular position

theta=zeros([1,MAXLINK+1]); % Denavit & Hartemberg’s parameters (D&H)

d =zeros([1,MAXLINK+1]);

a =zeros([1,MAXLINK+1]);

b =zeros([1,MAXLINK+1]);

fi =[0 PIG_2 0 0 3*PIG_2 PIG_2 0];

% Matrices initializations and declarations

mabs =zeros(4,4*(MAXLINK+1)); % array containing abs. pos.mat.of frame (i) in frame (0)

Wabs =zeros(4,4*(MAXLINK+1)); % array containing abs. vel.mat.of frame (i) in frame (0)

Habs =zeros(4,4*(MAXLINK+1)); % array containing abs. vel.mat.of frame (i) in frame (0)
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mreli_1=zeros(4,4*(MAXLINK+1)); % array containing pos. mat. of frame (i) seen in frame (i-1)

Wreli_1=zeros(4,4*(MAXLINK+1)); % array containing rel.vel.mat.of frame (i) seen in frame (i-1)

Hreli_1=zeros(4,4*(MAXLINK+1)); % array containing rel.acc.mat.of frame (i) seen in frame (i-1)

Wrel0 =zeros(4,4*(MAXLINK+1)); % array containing rel.vel.mat.of frame (i) seen in frame (0)

Hrel0 =zeros(4,4*(MAXLINK+1)); % array containing rel.acc.mat.of frame (i) seen in frame (0)

Last =[0 1 0 0; % transformation matrix from frame (6) to gripper element Z-U is in a[7]

0 0 1 0;

1 0 0 0;

0 0 0 1 ];

first=ORIGIN; % origin of frame 0 with respect to base,Z value is in a[1]

string1=input(’Digit the name of the input DATA FILE: ’,’s’);

data=fopen(string1,’r’);

if (data==-1)

error(’Error in ELB_D_DH.M, unable to open DATA FILE ’)

end

string2=input(’Digit the name of the input MOTION FILE: ’,’s’);

motion=fopen(string2,’r’);

if (motion==-1)

error(’Error in ELB_D_DH.M, unable to open the MOTION FILE ’)

end

string3=input(’Digit the name of the OUTPUT FILE (S=Screen): ’,’s’);

string3=upper(string3);

if (string3==’S’)

out=1;

else

out=fopen(string3,’wt’);

end

if (out==-1)

error(’Error in ELB_D_DH.M, unable to open OUTPUT FILE ’)

end

a(1)=0;

for i=2:1:MAXLINK+1 %MAXLINK+1 % read link lenghts from data file

a(i)=fscanf(data,’%f’,1);

end

first(Z)=a(2);

mabs(:,1:4)=rotat24(Z,PIG_2,first); % pos. mat. of frame 0 from base frame */

Last(Z,U)=a(7); % gripper position in frame 6

Aus=UNIT4;

a(2)=0; % D&H parameter ’a’ of link 1 and link 6 are zero

a(7)=0;

dt=fscanf(motion,’%f’,1); % read time step from motion file

fprintf(out,’\n%f’,dt); % write dt to out file

fprintf(out,’\n%d %d %d\n\n’,ii-1,jj-1,kk-1); % write Cardan convention to out file

time=0;

while ~feof(motion)

for i=1:1:MAXLINK

p=4*i-3;

pp=[p:p+3];

q= fscanf(motion,’%f’,1); % read joint motion

qp= fscanf(motion,’%f’,1);

[qpp,count]=fscanf(motion,’%f’,1);

if count~=1 break, end

% Builds relative position matrix

mreli_1(:,pp)=dhtom(Rev,theta(i),d(i),b(i),a(i+1),fi(i+1),q);

% Builds relative velocity and acceleration matrix in local frame(4)

[ Wreli_1(:,pp),Hreli_1(:,pp) ]=veactowh(Rev,qp,qpp);

mabs(:,pp+4)=mabs(:,pp)*mreli_1(:,pp); % Absolute position matrix of frame (i)

Wrel0(:,pp)=mami(Wreli_1(:,pp),mabs(:,pp)); % W and H matrices in frame (i)

Hrel0(:,pp)=mami(Hreli_1(:,pp),mabs(:,pp));

Wabs(:,pp+4)=Wabs(:,pp)+Wrel0(:,pp); % Evaluates absolute velocity matrix

% Evaluates absolute acceleration matrix

Habs(:,pp+4)=coriolis(Habs(:,pp),Hrel0(:,pp),Wabs(:,pp),Wrel0(:,pp));
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end % end on MAXLINK loop

if count~=1 break, end

gripper=mabs(:,pp+4)*Last; % gripper position mabs(:,pp+4)

Aus(X,U)=gripper(X,U);

Aus(Y,U)=gripper(Y,U);

Aus(Z,U)=gripper(Z,U);

Waus=NULL4; Haus=NULL4;

Waus=miam(Wabs(:,pp+4),Aus); % transform velocity

Haus=miam(Habs(:,pp+4),Aus); % and acceleration in ausiliar frame

% extracts Cardan angles (and their time derivatives) of gripper

[q1,q2,qp1,qp2,qpp1,qpp2]=htocarda(gripper,Waus,Haus,ii,jj,kk);

fprintf(1,’\nTime=%f\n’,time); % Print Output Results only on the screen

printm(’The position matrix of the gripper is:’,gripper);

printm(’The velocity matrix of the gripper is:’,Waus);

printm(’The acceleration matrix of the gripper is:’,Haus);

fprintf(’\n\nPress any key to continue\n\n’);

pause;

fprintf(out,’\n’); % Print Output Results on the screen or in a FILE

fprintf(out,’\n%7.6f %7.6f %7.6f’, q1(X), q1(Y), q1(Z));

fprintf(out,’\n%7.6f %7.6f %7.6f’, qp1(X), qp1(Y), qp1(Z));

fprintf(out,’\n%7.6f %7.6f %7.6f’,qpp1(X),qpp1(Y),qpp1(Z));

fprintf(out,’\n%7.6f %7.6f %7.6f’,gripper(X,U),gripper(Y,U),gripper(Z,U));

fprintf(out,’\n%7.6f %7.6f %7.6f’,Waus(X,U),Waus(Y,U),Waus(Z,U));

fprintf(out,’\n%7.6f %7.6f %7.6f’,Haus(X,U),Haus(Y,U),Haus(Z,U));

time=time+dt;

end % end main loop

fclose(’all’);

7.6.6 The sample program ELB D PA

Frame positions

Figure 7.21: Frames definition for the example of elbow robot with the program ELB D DH.C.

The reference frame are attached to the links in such a way that in the ”home” position (q1 = q2 =
. . . = q6 = 0) the frames are all parallel to each other. The frames are positioned at the beginning of the
links. Different from the first case, the frames result to be seven. The frames #6 and #7 move together
but they have different positions. The base frame Xa, Ya, Za coincides with X0, Y0, Z0. The gripper frame
Xb, Yb, Zb coincides with X7, Y7, Z7.
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The program ELB D PA

%_______________________________________________________________________________________________

% ELB_D_PA.M

% Program for the DIRECT kinematics of ELBOW robot. Frames assigned according to Denavit and

% Hartenberg conventions. The output of this program is compatible with the input of elb_i_dh.m

% The input of this program is compatible with the output of elb_i_dh.m

% Input file: ELBOW.DAT and JOINT.MOT. Output file: GRIPPER.MOT

% (c) G. Legnani, C. Moiola 1998

%_______________________________________________________________________________________________

spheader

MAXLINK=6;

clc

axis=[U Z X X X Z X U];

ii=X; % Euler/Cardan convention

jj=Y; % for gripper

kk=Z; % angular position

a =zeros([1,MAXLINK+2]); % Denavit & Hartemberg’s parameters (D&H)

O =zeros([MAXLINK+2,U]);

% Matrices initializations and declarations

mabs =zeros(4,4*(MAXLINK+2)); % array containing abs. pos. mat. of frame (i) in frame (0)

Wabs =zeros(4,4*(MAXLINK+2)); % array containing abs. vel. mat. of frame (i) in frame (0)

Habs =zeros(4,4*(MAXLINK+2)); % array containing abs. vel. mat. of frame (i) in frame (0)

mreli_1=zeros(4,4*(MAXLINK+2)); % array containing pos. mat. of frame (i) seen in frame (i-1)

Wreli_1=zeros(4,4*(MAXLINK+2)); % array containing rel.vel.mat.of frame (i) seen in frame (i-1)

Hreli_1=zeros(4,4*(MAXLINK+2)); % array containing rel.acc.mat.of frame (i) seen in frame (i-1)

Wrel0 =zeros(4,4*(MAXLINK+2)); % array containing rel.vel.mat.of frame (i) seen in frame (0)

Hrel0 =zeros(4,4*(MAXLINK+2)); % array containing rel.acc.mat.of frame (i) seen in frame (0)

string1=input(’Digit the name of the input DATA FILE: ’,’s’);

data=fopen(string1,’r’);

if (data==-1)

error(’Error in ELB_D_DH.M, unable to open DATA FILE ’)

end

string2=input(’Digit the name of the input MOTION FILE: ’,’s’);

motion=fopen(string2,’r’);

if (motion==-1)

error(’Error in ELB_D_DH.M, unable to open the MOTION FILE ’)

end

string3=input(’Digit the name of the OUTPUT FILE (S=Screen): ’,’s’);

string3=upper(string3);

if (string3==’S’)

out=1;

else

out=fopen(string3,’wt’);

end

if (out==-1)

error(’Error in ELB_D_DH.M, unable to open OUTPUT FILE ’)

end

for i=2:1:MAXLINK+1 % read link lenghts from data file

a(i)=fscanf(data,’%f’,1);

end

O(1,X)=0.; O(1,Y)=0.; O(1,Z)=0.; O(1,U)=1.; % rel. origin of frame (i) in (i-1)

O(2,X)=0.; O(2,Y)=0.; O(2,Z)=a(2); O(2,U)=1.;

O(3,X)=0.; O(3,Y)=a(3); O(3,Z)=0.; O(3,U)=1.;

O(4,X)=0.; O(4,Y)=a(4); O(4,Z)=0.; O(4,U)=1.;

O(5,X)=0.; O(5,Y)=a(5); O(5,Z)=0.; O(5,U)=1.;

O(6,X)=0.; O(6,Y)=0.; O(6,Z)=0.; O(6,U)=1.;

O(7,X)=a(7); O(7,Y)=0.; O(7,Z)=0.; O(7,U)=1.;

Aus=UNIT4;
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mabs(:,1:4)=UNIT4;

dt=fscanf(motion,’%f’,1); % read time step from motion file

fprintf(out,’\n%f’,dt); % write dt to out file

fprintf(out,’\n%d %d %d\n\n’,ii-1,jj-1,kk-1); % write Cardan convention to out file

time=0;

while ~feof(motion)

for i=1:1:MAXLINK

p=4*i-3;

pp=[p:p+3];

q=fscanf(motion,’%f’,1); % read joint motion

qp=fscanf(motion,’%f’,1);

[qpp,count]=fscanf(motion,’%f’,1);

if count~=1 break, end

mreli_1(:,pp)=rotat24(axis(i+1),q,O(i,X:U)); % Builds relative position matrix

% Builds relative velocity and acceleration matrix in local frame(4)

[ Wreli_1(:,pp),Hreli_1(:,pp) ]=vactowh3(Rev,axis(i+1),qp,qpp,O(i,X:U));

mabs(:,pp+4)=mabs(:,pp)*mreli_1(:,pp); % Absolute position matrix of frame (i)

Wrel0(:,pp)=mami(Wreli_1(:,pp),mabs(:,pp)); % W and H matrices in frame (i)

Hrel0(:,pp)=mami(Hreli_1(:,pp),mabs(:,pp));

Wabs(:,pp+4)=Wabs(:,pp)+Wrel0(:,pp); % Evaluates absolute velocity matrix

% Evaluates absolute acceleration matrix

Habs(:,pp+4)=coriolis(Habs(:,pp),Hrel0(:,pp),Wabs(:,pp),Wrel0(:,pp));

end % end on MAXLINK loop

if count~=1 break, end

mreli_1(:,pp+4)=UNIT4;

mreli_1(X,p+7)=O(7,X);

Wreli_1(:,pp+4)=NULL4;

Hreli_1(:,pp+4)=NULL4;

mabs(:,pp+8)=mabs(:,pp+4)*mreli_1(:,pp+4);

Wrel0(:,pp+4)=mami(Wreli_1(:,pp+4),mabs(:,pp+4)); % W and H matrices in frame (i)

Hrel0(:,pp+4)=mami(Hreli_1(:,pp+4),mabs(:,pp+4));

Wabs(:,pp+8)=Wabs(:,pp+4)+Wrel0(:,pp+4); % Evaluates absolute velocity matrix

% Evaluates absolute acceleration matrix

Habs(:,pp+8)=coriolis(Habs(:,pp+4),Hrel0(:,pp+4),Wabs(:,pp+4),Wrel0(:,pp+4));

% extracts Cardan angles (and their time derivatives) of gripper

[q1,q2,qp1,qp2,qpp1,qpp2]=htocarda(mabs(:,pp+8),Wabs(:,pp+8),Habs(:,pp+8),ii,jj,kk);

Aus(X,U)=mabs(X,p+11);

Aus(Y,U)=mabs(Y,p+11);

Aus(Z,U)=mabs(Z,p+11);

Waus=miam(Wabs(:,pp+4),Aus); % transform velocity

Haus=miam(Habs(:,pp+4),Aus); % and acceleration in ausiliar frame

% extracts Cardan angles (and their time derivatives) of gripper

[q1,q2,qp1,qp2,qpp1,qpp2]=htocarda(mabs(:,pp+8),Waus,Haus,ii,jj,kk);

fprintf(1,’\nTime=%f\n’,time); % Print Output Results only on the screen

printm(’The position matrix of the gripper is:’,mabs(:,pp+8));

printm(’The velocity matrix of the gripper is:’,Waus);

printm(’The acceleration matrix of the gripper is:’,Haus);

fprintf(’\nPress any key to continue\n\n’);

pause;

fprintf(out,’\n’); % Print Output Results on the screen or in a FILE

fprintf(out,’\n%7.6f %7.6f %7.6f’, q1(X), q1(Y), q1(Z));

fprintf(out,’\n%7.6f %7.6f %7.6f’, qp1(X), qp1(Y), qp1(Z));

fprintf(out,’\n%7.6f %7.6f %7.6f’,qpp1(X),qpp1(Y),qpp1(Z));

fprintf(out,’\n%7.6f %7.6f %7.6f’,mabs(X,p+11),mabs(Y,p+11),mabs(Z,p+11));

fprintf(out,’\n%7.6f %7.6f %7.6f’, Waus(X,U),Waus(Y,U),Waus(Z,U));

fprintf(out,’\n%7.6f %7.6f %7.6f’,Haus(X,U),Haus(Y,U),Haus(Z,U));

time=time+dt;

end % end main loop

fclose(’all’);
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7.6.7 Inverse kinematics

The program for the inverse kinematics reads the robot description and the requested motion for the
gripper producing the correspondent joints motion.The files used are:

GRIPPER.MOT is a file with the same format as the output file obtained from the sample programs for
the direct kinematics.

JOINT.MOT is a file with the same format as the input file for the sample programs for the direct kine-
matics. This file will contain the joint motion. This output file has a format compatible with the
input files for the direct kinematics.

GUESS.1ST is a file containing 6 value to be used as first guess for the iterative process which evaluates
the joint angles.

To run the program, just type in MATLAB Command Window, ELB I DH, so the program asks for the other
input and output files, that must be typed in at the prompt. For example:

’’ ELB I DH
’’ Type in the name of the input DATA file:
ELBOW.DAT
’’ Type in the name of the input MOTION file:
GRIPPER.MOT
’’ Type in the name of the input GUESS file:
GUESS.1ST
’’ Type in the name of the OUTPUT file (S=screen):
JOINT.MOT

7.6.8 The sample program ELB I DH.

%_______________________________________________________________________________________________

% ELB_I_DH.m program for the INVERSE kinematics of ELBOW robot.

%

% Frames assigned according to Denavit and Hartenberg conventions. The output of this program

% is compatible with the input of elb_d_dh.m The input of this program is compatible with the

% output of elb_d_dh.m

% Input file: ELBOW.DAT GRIPPER.MOT GUESS.1ST Output file: JOINT.MOT

% (c) G. Legnani, C. Moiola 1998

%_______________________________________________________________________________________________

clear

spheader

MAXLINK=6;

theta= zeros(1,MAXLINK+1); % Denavit & Hartemberg’s parameters

d = zeros(1,MAXLINK+1);

b = zeros(1,MAXLINK+1);

fi = [0 PIG_2 0 0 3*PIG_2 PIG_2 0];

a = zeros(1,MAXLINK+1);

q = zeros(1,MAXLINK); % joint angles

qp = zeros(1,MAXLINK); % array of joint vel. variables

qpp = zeros(1,MAXLINK); % array of jint acc. variables

%ds = zeros(1,MAXLINK); % sol. of the eq. J*dq=ds

dq = zeros(1,MAXLINK); % sol. of Newton/Raphson alg. step

buf = zeros(1,MAXLINK);

toll=0.0005; % precision of the solution

maxiter=15; % max. num. of iter. in N-R alg.

orig=ORIGIN;

mrelp_1=zeros(4,4*(MAXLINK+1)); % array containing pos. mat. of frame(p) seen in frame (p-1)

Wrelp_1=zeros(4,4*(MAXLINK+1)); %array containing rel.vel.mat.of frame (p) seen in frame (p-1)

Hrelp_1=zeros(4,4*(MAXLINK+1)); %array containing rel.acc.mat.of frame (p) seen in frame (p-1)
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mabs=zeros(4,4*(MAXLINK+1)); % array containing abs. pos. mat. of frame (p) in base frame

Wabs=zeros(4,4*(MAXLINK+1)); % array containing abs. vel. mat. of frame (i) in base frame

Habs=zeros(4,4*(MAXLINK+1)); % array containing abs. acc. mat. of frame (i) in base frame

mabsinv=NULL4; % invers position matrix of the frame positioned in the center of the gripper

Lrelp=NULL4; % L relative matrix of p-th joint seen in frame (p-1)

Lrel0=NULL4; % L relative matrix of p-th joint seen in base frame

Wrel0=zeros(4,4*(MAXLINK+1)); % array containing rel.vel.mat.of frame (p) seen in base frame

Hrel0=zeros(4,4*(MAXLINK+1)); % array containing rel.acc.mat.of frame (p) seen in base frame

Wtar=NULL4; % target velocity matrix

Htar=NULL4; % target acceleration matrix

dH=NULL4; % Htar - H~ H~ is the acceleration evaluated with qpp=0

Aus =UNIT4;

Waus=NULL4;

Haus=NULL4;

Wabs(:,1:4)=NULL4;

Habs(:,1:4)=NULL4;

gripper=zeros(4,4);

Last =[ 0 1 0 0 ; % transformation matrix from

0 0 1 0 ; % frame (6) to gripper

1 0 0 0 ; % element Z-U is in a(6)

0 0 0 1 ];

first=ORIGIN; % origin of frame 0 with respect to base, Z value is in a(1)

string1=input(’Digit the name of the input DATA FILE: ’,’s’);

data=fopen(string1,’r’);

if (data==-1)

error(’Error in ELB_I_DH.M, unable to open DATA FILE ’)

end

string2=input(’Digit the name of the input MOTION FILE: ’,’s’);

motion=fopen(string2,’r’);

if (motion==-1)

error(’Error in ELB_I_DH.M, unable to open the MOTION FILE ’)

end

string3=input(’Digit the name of the GUESS FILE ’,’s’);

guess=fopen(string3,’r’);

if (guess==-1)

error(’Error in ELB_I_DH.M, unable to open 1ST_GUESS FILE ’)

end

string4=input(’Digit the name of the OUTPUT FILE (S=Screen): ’,’s’);

string4=upper(string4);

if (string4==’S’)

out=1;

else

out=fopen(string4,’wt’);

end

if (out==-1)

error(’Error in ELB_I_DH.M, unable to open OUTPUT FILE ’)

end

for p=2:1:MAXLINK+1

a(p)=fscanf(data,’%f’,1); % read robot description

end

for p=1:1:MAXLINK

q(p)=fscanf(guess,’%f’,1); % 1st guess for q

end

Jac=zeros(MAXLINK,MAXLINK); % Matrices initialization

first(Z)=a(2);

mtar=NULL4;

dH=NULL4;

mabs(:,1:4)=rotat24(Z,PIG_2,first); % pos. mat. of frame 0 from base frame

Last(Z,U)=a(7); % gripper position in frame 6
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a(2)=0; % D&H parameter ’a’ of link 1 and link 6 are zero

a(7)=0;

dt=fscanf(motion,’%f’,1); % read time step

ii=fscanf(motion,’%d’,1)+1; % read Cardan convention

jj=fscanf(motion,’%d’,1)+1;

kk=fscanf(motion,’%d’,1)+1;

fprintf(out,’\n %f \n’,dt);

t=0;

while ~feof(motion) % main loop

[q1(1),count]=fscanf(motion,’%f’,1); % read joint motion

if count~=1 break, end

q1(2) = fscanf(motion,’%f’,1);

q1(3) = fscanf(motion,’%f’,1);

qp1(1) = fscanf(motion,’%f’,1);

qp1(2) = fscanf(motion,’%f’,1);

qp1(3) = fscanf(motion,’%f’,1);

qpp1(1)= fscanf(motion,’%f’,1);

qpp1(2)= fscanf(motion,’%f’,1);

qpp1(3)= fscanf(motion,’%f’,1);

O(X) = fscanf(motion,’%f’,1);

O(Y) = fscanf(motion,’%f’,1);

O(Z) = fscanf(motion,’%f’,1);

O(U)=1;

vel(1) = fscanf(motion,’%f’,1);

vel(2) = fscanf(motion,’%f’,1);

vel(3) = fscanf(motion,’%f’,1);

acc(1) = fscanf(motion,’%f’,1);

acc(2) = fscanf(motion,’%f’,1);

[acc(3),count]=fscanf(motion,’%f’,1);

if (count~=1)

break;

end

mtar=cardatom(q1,ii,jj,kk,O); % builds target position matrix

mtar= vmcopy(O,3,4,Col,mtar,4,4);

for k=1:1:maxiter

for i=1:1:MAXLINK

p=4*i-3;

pp=[p:p+3];

% builds rel. pos. matrix

mrelp_1(:,pp)=dhtom(Rev,theta(i),d(i),b(i),a(i+1),fi(i+1),q(i));

mabs(:,pp+4)=mabs(:,pp)*mrelp_1(:,pp); % builds abs. pos. matrix

Lrelp=makel2(Rev,Z,0.,orig); % builds rel. L matrix in base frame

Lrel0=mami(Lrelp,mabs(:,pp)); % builds rel L matrix in frame (p)

buf(1)=Lrel0(X,U);

buf(2)=Lrel0(Y,U);

buf(3)=Lrel0(Z,U);

buf(4)=Lrel0(Z,Y);

buf(5)=Lrel0(X,Z);

buf(6)=Lrel0(Y,X);

Jac=vmcopy(buf,6,i,Col,Jac,MAXLINK,MAXLINK);

end % fine ciclo MAXLINK

gripper=molt(mabs(:,pp+4),Last);

dm=(mtar-gripper);

n=norm(dm);

if (n>toll) % tests if solution has been reached

mabsinv=invers(gripper);

dS=dm*mabsinv;

ds(1)=dS(X,U);

ds(2)=dS(Y,U);

ds(3)=dS(Z,U);

ds(4)=dS(Z,Y);

ds(5)=dS(X,Z);
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ds(6)=dS(Y,X);

[dq,rankm]=solve_l(Jac,ds’);

if(rankm~=MAXLINK) % builds the joint var. at next step

fprintf(1,’\n*** rank is %d: singular position!’,rankm);

end

q=q+dq’;

else

break;

end % end if

end % fine del ciclo maxiter

if (k<maxiter)

Aus(X,U)=gripper(X,U);

Aus(Y,U)=gripper(Y,U);

Aus(Z,U)=gripper(Z,U);

Waus=cardatow(q1,qp1,ii,jj,kk,O); % builds target velocity matrix

Waus=vmcopy(vel,3,4,Col,Waus,4,4);

Wtar=mami(Waus,Aus); % transform velocity from ausiliar frame to base frame

Haus=cardatoh(q1,qp1,qpp1,ii,jj,kk,O); % builds target acceleration matrix

Haus=vmcopy(acc,3,4,Col,Haus,4,4);

Htar=mami(Haus,Aus); % transform accel. from ausiliar frame to base frame

buf(1)=Wtar(X,U); % builds joint velocity array

buf(2)=Wtar(Y,U);

buf(3)=Wtar(Z,U);

buf(4)=Wtar(Z,Y);

buf(5)=Wtar(X,Z);

buf(6)=Wtar(Y,X);

[qp,rankm]=solve_l(Jac,buf’);

if(rankm~=MAXLINK)

fprintf(1,’\n*** rank is %d: singular position!\n’,rankm);

end

for i=1:1:MAXLINK % acceleration

p=4*i-3;

pp=[p:p+3];

[Wrelp_1(:,pp),Hrelp_1(:,pp)]=veactowh(Rev,qp(i),0.);

Wrel0(:,pp)=mami(Wrelp_1(:,pp),mabs(:,pp)); % W and H matrices in frame 0

Hrel0(:,pp)=mami(Hrelp_1(:,pp),mabs(:,pp));

Wabs(:,pp+4)=Wabs(:,pp)+Wrel0(:,pp); % abs. vel. and acc. matrices

Habs(:,pp+4)=coriolis(Habs(:,pp),Hrel0(:,pp),Wabs(:,pp),Wrel0(:,pp));

end % end ciclo for sui MAXLINK

dH=Htar-Habs(:,pp+4);

buf(1)=dH(X,U); % builds joint acceleration array

buf(2)=dH(Y,U);

buf(3)=dH(Z,U);

buf(4)=dH(Z,Y);

buf(5)=dH(X,Z);

buf(6)=dH(Y,X);

[qpp,rankm]=solve_l(Jac,buf’);

if(rankm~=MAXLINK) fprintf(’\n*** rank is %d: singular position!\n’,rankm), end

else

fprintf(’\nNewton-Raphson method does not converge\n’);

return;

end % close k<maxiter loop

fprintf(’\n Time=%f\n’,t); % Print output results

printm(’The joint angles q are’, q);

printm(’The joint velocity qp are’, qp’);

printm(’The joint acceleration qpp are’,qpp’);

fprintf(’\n\nPress any key to continue\n\n’);

pause;

for p=1:1:MAXLINK

fprintf(out,’\n%15.5f %15.5f %15.5f’,q(p),qp(p),qpp(p));

end
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fprintf(out,’\n’);

t=t+dt;

end % end main loop

fclose(’all’);
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Appendix A

Comparison between the versions of SpaceLib c©.

A.1 Table of comparison

The following table lists all the SpaceLib functions comparing the three releases (C, MATLAB and
Maple 9 ).

Table A.1: Table of comparison

C MATLAB c© Maple 9 c© description

actom actom actoM Actions to Matrix.
angle angle Angle Angle between points.
axis aaxis Axis

axis
Axis of Frame.

cardanto G
cardanto G3
cardanto G4

cardatog cardantoG Cardan angles to angular acceleration
matrix.

cardanto omega
cardanto omega3
cardanto omega4

cardtome cardanto OMEGA Cardan angles to angular velocity matrix.

cardanto OMEGA cardtoom cardanto omega Cardan angles to angular velocity.
cardanto OME-
GAPTO

cardompt cardanto ome-
gapto

Cardan angles to angular acceleration.

cardanto OME-
GAPTO

Cardan angles to angular acceleration
matrix.

cardantoH cardatoh cardantoH Cardan angles to acceleration matrix.
cardantol cardatol cardantoL Cardan angles to L matrix.
cardantoM cardatom cardantoM Cardan angles to position matrix.
cardantor
cardantor3
cardantor4

cardator cardantoR Cardan (or Euler) angles to rotation ma-
trix.

cardantoW cardatow cardantoW Cardan angles to velocity matrix.
cardantoWPROD
WPRODtocardan

cardtowp cardantoWPROD

cardtoH cardtoH Cardan angles to acceleration matrix.
cardtoM cardtoM Cardan angles to position matrix.
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C MATLAB c© Maple 9 c© description

cardtoW cardtoW Cardan angles to velocity matrix.
clear
clear3
clear4
clearv3

clearmat 1 clear 2

nullM 2
Clear a matrix (fill it with zeros).

coriolis coriolis coriolis Coriolis’ theorem.
cross cross 3 cross Vector cross product.
crossMtoM crossmto 3

crosstom 1
crossMtoM 2 Cross product for matrices (Matricial

form).
crossvtom
crossmtom 3

Cross product for matrices (Vector
form).

deg deg deg Conversion from radians to degrees.
dhtom dhtom dhtom Denavit & Hartenberg’s parameters to

matrix (Extended version).
DHtoMstd dhtomstd DHtoMstd Denavit & Hartenberg’s parameters to

matrix (Standard Version).
dist distp

dist 3
distp Distance between two points.

distpp distpp distpp Distance of point from a plane.
dot dot 3

dot3
vdot3 3 elements vector dot (scalar) product.

dot2 dot2 vdot any elements vector dot (scalar) product.
dyn eq dyn eq dyn eq Solve Direct Dynamics system.
dzerom Double Machine’s zero.
eultoH eultoH Cardan angles to acceleration matrix.
eultoM eultoM Cardan angles to position matrix.
eultoW eultoW Cardan angles to velocity matrix.
extract extract extract Extracts unit vector of screw axis and ro-

tation angle from rotation matrix.
fprintm3
fprintm4
fprintv

fprintm fprintm Print a matrix (with a comment) on a
file.

fmod fractional part of x/y.
frame4P frame4p frame4P Frame from three points.
frame4V frame4v frame4V Frame from a point and two vectors.
frameP
frameP3
frameP4

framep frameP Frames from points.

frameV
frameV3
frameV4

framev frameV Frame from vectors.

fzerom Float Machine’s zero.
grad 3 Conversion from radians to degrees.

1Function not really necessary in MATLAB c©: provided just for compatibility with the C version of SpaceLib c©.
2Function not really necessary in Maple 9 c©: provided just for compatibility with the C version of SpaceLib c©.
3obsolete version.
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C MATLAB c© Maple 9 c© description

gtom gtom gtoM Gravity acceleration to Matrix.
Gtomegapto gtomgapt Gtomegapto G to omega dot.
Htocard Htocard Acceleration matrix to Cardan angles.
Htocardan htocarda Htocardan Acceleration matrix to Cardan angles.
Htoeul Htoeul Acceleration matrix to Cardan angles.
Htonaut Htonaut Acceleration matrix to Cardan angles.
idmat
idmat3
idmat4

idmat 1 idmat 2

eye 2
Identity matrix.

intermediate intermed intermediate Middle weight point.
inters2pl inter2pl inters2pl Intersecton of two planes.
intersection intersect intersection Intersection between two lines.
interslpl interlpl interslpl Intersecton of line and plane.
invA inva invA

invers invers invers Inverse of a position matrix.
jrand jrand Creates a random matrix with elements

in the range min..max.
jtoJ jtoj jtoJ Inertia moment and mass to inertia ma-

trix.
line2p line2p line2p Line from two points.
linear linears linear Linear System.
linepvect linpvect linepvect Line from point and vector.
makeL makel makeL Builds a L matrix.
makeL2 makel2 makeL2 Builds a L matrix - version 2.

Mcheck Checks for Position/Rotation Matrix.
Mcheck2 Checks for Position/Rotation Matrix

version 2.
mcopy
mcopy3
mcopy4

mcopy 1 Matrix copy.

middle middle middle Middle point.
minvers minvers 1 minvers 2 Matrix Inverse System.

Miszero Test Zero Matrix.
mmcopy
mcopy34
mcopy43

mmcopy 1 Copy a part of a matrix.

mod mod 3

modulus
modulus Module of a vector.

molt
molt3
molt4

molt 1 Matrix multiplication.

moltmv3 Multiply a matrix by a vector.
moltp Multiply a matrix by a point.
Mtocard Mtocard Position matrix to Cardan angles.
Mtocardan mtocarda Mtocardan Position matrix to Cardan angles.
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C MATLAB c© Maple 9 c© description

Mtoeul Mtoeul Position matrix to Cardan angles.
Mtonaut Mtonaut Position matrix to Cardan angles.
mtoscrew mtoscrew Mtoscrew Matrix to screw.
mtov
mtov3
mtov4

mtov Mtov Matrix to vector.

mvcopy Copy a row or a column from a matrix.
nauttoH nauttoH Cardan angles to acceleration matrix.
nauttoM nauttoM Cardan angles to position matrix.
nauttoW nauttoW Cardan angles to velocity matrix.
norm
norm3
norm4

Norm of a matrix.

norm simm skew
n simm3
n simm34
n simm4
n skew3
n skew34
n skew4

normskew norm simm skew Normalizes symmetric or skew-
symmetric matrices.

normal
normal3
normal4

normal
normal3

normalR Normalizes (orthogonalises) a 3×3 rota-
tion matrix or the 3×3 upper-left subma-
trix of a position matrix.

normal g normal g Normalizes (orthogonalises) any square
matrix.

pcopy Point copy.
plane plane plane3p Plane from three points.
plane2 plane2 planepv Plane from point and vector.
printm
printm4
printv

printm printm Print a matrix (with a comment) on the
screen.

printmat
iprintmat

Prints a real elements matrix.

prmat prmat prmat Print a position matrix for GRP man
graphics post-processor.

project project project Project a point on a plane.
projponl projponl projponl Projection of point on line.
psedot psedot psedot Pseudo scalar product.
pseudo inv pseudinv 1 pseudo inv 2 Pseudo inverse of a matrix.

Origin Origin Point.
rmolt
rmolt3
rmolt4

rmolt 2 Multiply a scalar r by a matrix.

rmoltv Multiply a scalar r by a vector.
rad rad rad Conversion from degrees to radians.
rotat rotat rotat Builds the rotation matrix R.
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C MATLAB c© Maple 9 c© description

rotat2
rotat23

rotat2 rotat2 Rotation around a frame axis.

rotat24 rotat24 rotat24 Rotation matrix around an axis with ori-
gin in a given point.

rotat34 rotat34 rotat34 Rotation matrix around an axis with ori-
gin in a given point.

rtocardan
rtocardan3
rtocardan4

rtocarda Rtocardan Rotation matrix to Cardan (or Euler)
angles.

screwtom screwtom screwtoM Screw to Matrix.
skew
skew4

skew skew Skew operator.

solve solve l 1 solver 2 Solve linear system.
sub
sub3
sub4
subv

sub 1 Subtraction for matrices or vectors.

sum
sum3
sum4
sumv

ssum 1 Sum of matrices or vectors.

trac ljlt4 tracljlt trac ljlt Trace of L1 J L2
t.

traslat traslat traslat Builds the matrix m of a traslation along
a vector.

traslat2 traslat2 traslat2 Builds the matrix m of a traslation along
a frame axis.

traslat24 traslat24 traslat24 Builds the matrix m of a traslation along
a frame axis with origin in a given point.

transp
transp3
transp4

transp 1 Transpose of a matrix.

trasf mami mami trasf mami Transforms a matrix by the rule of M A
M−1 (mami = mAminverse).

trasf mamt
trasf mamt4

mamt trasf mamt Transforms a matrix by the rule of M A
Mt (mami = mAmtranspose).

trasf miam miam trasf miam Transforms a matrix by the rule of M−1

A M (miam = minverseAm).
trasf miamit miamit trasf miamit Transforms a matrix by the rule of M−1

A M−t (miamit = minverseAminverse
transposed).

unitv unitv unitv Unit vector.
vcopy Vector copy.
vect vect vect Vector between points.
vector vector Evaluate a vector (from module and di-

rection).
vect3 Vector(3) from vector.
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C MATLAB c© Maple 9 c© description

velacctoWH veactowh velactoWH Velocity and Acceleration to W and H
matrices.

velacctoWH2 vactowh2 velactoWH2 Velocity and Acceleration to W and H
matrices - version 2.

velacctoWH3 vactowh3 velactoWH3 Velocity and Acceleration to W and H
matrices - version 3.

viszero Test Zero vector.
vmcopy Copy a vector into a row or a column of

a matrix.
vtom
vtom3
vtom4

vtom vtoM Vector to matrix.

Wtocard Wtocard Velocity matrix to Cardan angles.
Wtocardan wtocarda Wtocardan Velocity matrix to Cardan angles.
Wtoeul Wtoeul Velocity matrix to Cardan angles.
WtoL wtol WtoL Extracts L matrix from the corresponding

W matrix.
Wtonaut Wtonaut Velocity matrix to Cardan angles.
Wtovel wtovel Wtovel Velocity matrix to velocity parameters.
zerom Machine’s zero.
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E PROJPO.M, example 3.28 , 58
E ROTAT.M, example 3.5 , 29
E RTOCAR.M, example 3.16 , 47
E SCREWT.M, example 3.4 , 28
E TRMAMT.M, example 3.15 , 43
E TRSF M.M, example 3.14 , 42
E VELWH2.M, example 3.12 , 36
E WTOL P.M, example 3.9 , 33
E WTOL R.M, example 3.10 , 34
E WTOV P.M, example 3.11 , 35
E WTOVEL.M, example 3.11 , 35
ELB D DH.M , 107
ELB D PA.M , 110
ELB I DH.M , 112
ELBOW.DAT , 105
eps constant , 19
Euler angles definition , 46
Example 3.1 E DHTOM.M , 24
Example 3.2 E EXTRAC.M , 26
Example 3.3 E MTOSCR.M , 28
Example 3.4 E SCREWT.M , 28
Example 3.5 E ROTAT.M , 29
Example 3.6 E GTOM.M , 31
Example 3.7 E MAKEL.M, E MAKEL0.M , 31
Example 3.8 E MAKELP.M , 32
Example 3.9 E WTOL P.M , 33
Example 3.10 E WTOL R.M , 34
Example 3.11 E WTOVEL.M, E WTOV P.M , 35
Example 3.12 E VELWH2.M , 36
Example 3.13 E JTOJ.M , 39
Example 3.14 E TRSF M.M , 42
Example 3.15 E TRMAMT.M , 43
Example 3.16 E RTOCAR.M , 47
Example 3.17 E CARDAM.M , 47
Example 3.18 E CARDAW.M , 48
Example 3.19 E CRD OM.M , 49
Example 3.20 E CRD ME.M , 50
Example 3.21 E CARDAH.M , 50
Example 3.22 E CARDTG.M , 51
Example 3.23 E CARDPT.M , 52
Example 3.24 E FRAMEP.M , 53
Example 3.25 E FRAM4P.M , 54
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Example 3.26 E FRAMEV.M , 55
Example 3.27 E FRAM4V.M , 56
Example 3.28 E PROJPO.M , 58
Example 3.29 E INTRLP.M , 60
extract , 26

For constant , 18
fprintm , 65
frame4p , 54
frame4v , 56
framep , 53
framev , 55

grad , 44
GRIPPER.MOT , 105
gtom , 30
gtomgapt , 31
GUESS.1ST , 105

htocarda , 51

idmat , 62
INP.DAT , 70
inter2pl , 59
interlpl , 60
intermed , 57
intersec , 58
inva , 52
invers , 44

JOINT.MOT , 105
jrand , 44
jtoj , 38

line2p , 58
linears , 69
linpvect , 58

makel , 31
makel2 , 33
mami , 41
mamt , 43
mcopy , 64
miam , 42
miamit , 42
middle , 57
minvers , 68
mmcopy , 64
mod , 64
modulus , 64
molt , 60
mtocarda , 48
mtoscrew , 27
mtov , 45

Nautic angles definition , 46
normal , 40
normal3 , 41

normal g , 41
normskew , 41
NOTOK constant , 18
NULL3 constant , 19
NULL4 constant , 19

OK constant , 18
ORIGIN constant , 19

pi constant , 19
PIG constant , 19
PIG2 constant , 19
PIG 2 constant , 19
plane , 59
plane2 , 59
Pri constant , 18
printm , 65
prmat , 65
project , 59
projponl , 58
PseDot , 40
pseudinv , 63

rad , 44
Rev constant , 18
rmolt , 61
rotat , 28
rotat2 , 29
rotat24 , 29
rotat34 , 30
Row constant , 18
rtocarda , 47

SAT.M , 103
SCARA.DAT , 84
SCARA.MOT , 84
SCARA.OUT , 84
screwtom , 28
skew , 45
SKEW constant , 18
SMART.DAT , 84
SMART.MOT , 84
SMART.OUT , 84
solve l , 68
ssum , 61
sub , 61
SYMM constant , 18

Tait-Brian angles definition , 46
TEST-LIN.M , 70
TEST.DAT , 91
TEST.MOT , 91
Tor constant , 18
tracljlt , 46
transp , 62
traslat , 30
traslat2 , 30
traslat24 , 30



INDEX SpaceLib c© in MATLAB c© 127

U constant , 19
UNIT3 constant , 19
UNIT4 constant , 19
unitv , 64

vactowh2 , 36
vactowh3 , 37
veactowh , 35
vect , 57
vector , 64
vtom , 45

wtocarda , 49
wtol , 33
wtovel , 34

X constant , 19
Xaxis constant , 19
Xaxis n constant , 19

Y constant , 19
Yaxis constant , 19
Yaxis n constant , 19

Z constant , 19
Zaxis constant , 19
Zaxis n constant , 19
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