Legnani G, Zappa B, Righettini P. <A Homogeneous Matrix Approach to 3D Kinematics and Dynamics. Part 2:applications.
Mechanisms and Machine Theory (the scientific journa of IFTOMM. Pergamon Press U.K.) vol.31, n.5, pp.589-605, 1996

A HOMOGENEOUS MATRIX APPROACH

TO 3D KINEMATICSAND DYNAMICS

Part 2: applicationsto chains of rigid bodies and serial manipulators.

Giovanni LEGNANI®, Paolo RIGHETTINI? , Bruno ZAPPA® | Federico CASOLO®

©Universita di Brescia- Dip. di Ing. Meccanica, Via Branze 38, 25123 Brescig, Italy.

giovanni.LEGNANI @ ING.UNIBSIT

* Politecnico di Milano - Dip. Trasporti e Movimentazione - Pz.aL. DaVinci 32, 20133 Milano, Italy

SUMMARY.

RIGHETTINI @ MECH.POLIMI.IT

In this paper we present applications of the new approach to the kinematic and dynamic analysis of systems of rigid bodies
presented in part 1. An extension of the method to the Lagrangian formulation of the dynamics of chains of rigid bodies is aso
presented. The kinematic and dynamic analysis is performed for a generic serial manipulator either in open and closed loop. Two
numerical examples concerning an open loop and a closed loop are presented too. Two software packages based on our approach

are also briefly introduced.

1. INTRODUCTION.

This part of the paper is devoted to the presentation of the
application of the matrix approach described in part 1 of the
paper to open and closed chains of rigid bodies, moreover the
dynamics is extended to the Lagrangian formulation. We
present an analytical example that shows how to write the
kinematic and dynamic matrices of the well known Standford
Arm. A second example concerning a closed loop system is
aso developed. A further example refers to a numeric
solution for the direct kinematics and the inverse dynamics of
any serial manipulator using two standard libraries written in
C and in C++ language. These software packages outline the
good correspondence between the theoretical approach of the
problem and its implementation in simulation programs. The
notation used in the following paragraphs is explained in part
1 of the paper which is assumed known to the reader. Since,
in the study of chains of rigid bodies, subscripts often assume
standard values, it is possible to use an abbreviated notation
which makes the notation more compact. In other wordst
some subscripts can be omitted and we assume that

Li-vi =Li-gigi-1» Wi-1i =Wiigi-»» Hi-1i =Hicig-n-
2. CHAINS OF RIGID BODIES.

2.1. GENERAL CONSIDERATIONS.

In agreement with the Denavit and Hartenberg approach, we
suppose that al the links of the system are coupled to each

lgee appendix B of part one.

other by one degree of freedom lower pairs (prismatic,
revolute or screw pairs). Then if the system has joints with
more then one degree of freedom we should simulate it by
introducing dummy bodies with one degree of freedom. In
relation to the serial manipulator of fig. 1, relative position,
speed and acceleration matrices between two contiguous
bodies h-1 and h can be expressed as a function of the joint
variable g, and its first and second time derivatives ¢, ¢y,

where h is the joint between the bodies. For each link hit is
possible to define the position matrix My, ; |, describing its
position with respect to the previous link; this matrix depends
on the h-th joint variable q,. More over each velocity and
acceleration matrix relative to contiguous bodies can be
expressed as a function of matrix L, which in this case is a
sort of generalized velocities ratio matrix

__

Fig. 1: scheme of a serial manipulator.

Wh.1h =Lh-1n0h -

By remembering the relation between matrix H and L
revealed in partl we can write

2 .2 .
Hh-1h =L%-1n0y" +L h. 1 nh

L , has similar properties (base reference transformation rule)
to the correspondent matrix W and takes, for prismatic and
screw pairs respectively, the two forms:

*Lijk =

o iu
PLije = i

i (o}

0000 0 00i0
where U (unit vector) contains the direction cosinesin (k) of
the axis of the joint between the two bodies i and j,
b=-ut+ pu, pispitch of the pair, and t is the position
in (k) of an arbitrary point of the axis. U and t can be
immediately obtained from the appropriate position matrix. A
revolute joint is a screw joint having a null pitch (p=0). If the
reference frame of two subsequent bodies (h-1 and h) are
placed according to the Denavit and Hartenberg notation
vector U assumes the simple form U' =[0,0,1]' and matrix L
issimply:

000! 0 -10;0
] 00 0 s oo "
h-1h = 000i1 "™"7lo o 0ip
000} 0 0 0:0

The position, speed and acceleration matrices of each body i
can be found starting from the base of the manipulator and
moving towards the end effector applying the motion
composition rule

Monh=Moh 1tMh.1h
Won =Wo,h-1+Wh.1h0)
Hon =Hoh-1+ Hh-1n0) ¥ 2Wo h- tWh- 1h(0)

where My, =[1] (identity matrix) and W,, =Hg, =[0]
(null matrix). These equations can be generalized, for i 3 2
asfollows:

i
Mo = QM(@));.1,
=1

i i
o o .
Woi =a Wj.1j =a L j-1j0] @
j:]_ j:l
| r 1
a HJ Li© * A & 2We 150 Wr-1r(0) = 3
j=1 r=2s=1

d [b .
=a (Lj-l,j(O)qj) *Lijodi]*
4
ir-1
[o] [o] L.
+ a. a. 2L s- 1,s(0)Lr-1,r(0)QSQr
r=2s=1

The acceleration equation can be rewritten separating the
effect of the joint velocities and accelerations

i

o .. ~
Ho,i =a[Lj-lj(0)qj]+H

j=1

- |
H=3 [(L j-lj(O)qj)2]+ (3bis)
=1
i r-1
o [o] L.
ta a 2s-1s0)lr-1r(0)9s0r
r=2s=1

In other words, H contains the Coriolis and the centrifugal
terms

The angular velocity and acceleration of the end-effector can
be extracted by the 3" 3 submatrix of W, , and Hy, , (see
equations (6) and (7) of part) whileits linear velocity and
acceleration can be evaluated as

P" =W P’ P =HonP

where P* isthe last column of Mo

2.2. CLOSED LOOP SYSTEMS.

If the system contains closed loops, three constraint matrix
equations (for position, velocity and acceleration) can be
written for each loop. These equations can be obtained by
thinking of aloop as an open chain with the first and the last
body coinciding (n © 0):

1n =Mgo =[1] (4
Won =Woz +Wypg) teeee. + Wi 1n0) = Wo,o =[0] (5)
Hon =Hoa+Hypo) +2Wo Wi 50y F.....= Ho o =[0] (6)

where [1] is the identity matrix, and [0] the null one and all
W and H matrices must be evaluated in the same reference.

Due to the particular structure of the matrices involved (only
6 elements of each are independent), each of the equations
(4,5,6) is equivalent to a scalar system of 6 equations with
the n unknowns (g;, ¢, G). If the loop contains less than 6
joints and in special cases, some of the equations can depend
on each other.

The position equation is non linear while the others are linear
in ¢ or ¢ . Equations (5, 6) can easily be built using L
matrices, for example the former should be writen in frame
(0) as

a Li-1i@@ =[0]. (7
i=1

Remembering that the independent components of matrix L,
are

0 ALY bx‘
L = u 0 -u! by.
Uy b 0
0 0 0 1 0

the linear system Aqg =[0] obtained from Eq. 7 is

Uy, £ ity i ity
Uz iUz e Ug
Ag=| AT AT g =

by i 1B i bl

byli Ebyli Ebynq
by i by i b |

We have six equations for each loop and a number of
unknown equal to the number of the joints. The degree of
mobility of the loop (i.e. d.o.f.) is the difference between the
number of the joints and the independent eguations (the rank
of matrix A).

The acceleration equation of each loop can be built by eq. 6
using L matrices (eg. 3). It is represented by the system
Ad =b where the coefficient matrix A is identical to the
coefficient matrix A of the velocity equation system. In fact
this equation system can be aso obtained deriving the
velocity equation system with respect to time

Ad =0obtaining A§=-Aq, indeed b=-Aq .

Moreover the coefficient matrix A obtained in this way from
Eg. 5 6 is identica; b contains the Coriolis and the
centrifugal terms extracted from H of eg. (3hig). In fact eq.
(6) can be rewritten as é Lg=- H Finally the position
system must be solved before the others, while the velocities
system must be solved before that of the accelerations.

2.3. NEWTON-EULER DYNAMICS.

The dynamics of an open chain of rigid bodies can be
developed starting from the above equation and applying the
usual principles (virtua works, momentum and angular
momentum conservation, etc.). For example the joint action
Y, between the bodiesi-1 and i of an open chain (seefig. 1)
can be smply obtained by a dynamic equilibrium. In other
words Y; is just the sum of all the actions (including weight
and inertia) applied to body i,i+1,..n:

n
Yio =a [%N(Ho,ij(O))*ﬁ io*Fio

=
where H,; is the absolute acceleration of the body |, J;, is
its pseudo-inertial tensor referred to an inertial frame (0),
F i(0) s the weight action matrix, and F;, is the resultant
external action applied to the body, and the skew operator is
defined in part one, paragaph 4.6. The joint actions can be

also evaluated iteratively starting from joint n using the
recursive formula

Yi-x0) = Yigo) T SKOW(Ho; Ji(q)) + skew(H

i-10) = Ji)*F

g(0) i(0)
3. LAGRANGIAN DYNAMICS.

The matrix approach introduced alows the writing of the
dynamics equation of a system of rigid bodies following
Lagrange's method by means of the general equation

dTG TG

where the Lagrange quantityl is calculated as the difference
between the kinetic and potential energy (L = t-vV) and Q is
the generalized components of force along ¢ .

The kinetic energy of a body h is expressed as a function of
velocity and inertia matrix by means of the trace operator (see
note 3 of part one)

1
t, = ETrace(WovhJ hoyWon) (8)

while the potential energy due to the gravitational effect is
expressed by

Von = Trace(- Hg(o)Jh(o)) 9

We will develop Lagrange's formulation for the chain of rigid
bodies dividing the effects due to the kinetic and potential
energy. For the solution of the former we must obtain the
derivatives of matrices used in relation (8) with respect to
time t, to the coordinate q,, and ¢,,. The basic step is to
derive the position matrix from which we can obtain the other
derivatives. Starting from P, =M, P, the time derivative
dp,
dt
(i.e. P, is embedded on frame 1). Recaling the relation

between the velocity of the point of the body and matrix W,
and the transformation of frame reference of the point we can

. dm : .
yields = TmPl where P, is constant with respect to t

. dP, dMm
write —0 =W, Py=—2LM,,P, S0 that
dt 01" 0 dt 10'0
dM _— - .
91 = W,,M,,. The derivative of the position matrix
dt 0101

with respect to g,, can be found remembering that matrix L

represents an infinitesimal transformation and each column of
matrix M is a particular point (points at infinity of the axis
and the origin) of the frame, so we can write

L

dMi,j :} m-1m
dgn, 7 [O]

On these bases we can prove (see appendix) :

Mi,j if |<m£]

otherwise

h h
dWon _ o 0 .
e a Woi-1Wi_1i(0) - Wi-1i@Wo,i-1) + A Li-1i0)b
i=1 i=1
dWop _J [0] if m>h

on 1 !
ddn fLm1m@Wmno) - Wmn©bLm-1mo) if mEh

d\:;t(O) = Wondho * Jh(O)W(g,h
dIn) _i (0] if m>h
dm _% L m-1m©Jn(0) * In@L'm-1m(o) if MEH
so that
d 1ty Tty _ h

~ o
— 0 00 —Trace(Hop + & Licoydi)Inolino]
at T o 0,h 2.1 i(0) % o)L m(o)

where H is the acceleration matrix calculated for =0,

which depends on position and velocity and represents the
Coriolis and centrifugal effects:

h hr-1
-~ _ o 2 e 2 o O PO
Hon=al i-1jq; taaAdsisktr1r80s=
j=1 r=2s=1

h
° 2

=a (Wo,i- Wiy - Wi0)Wo,i-1) + Wo
i=1

The solution of thelast is

The complete dynamic eguation is given by the sum of the
two preceding relations.

For the determination of the generalised components of force
from the action matrix F we introduce a pseudo scalar
product A so that

N
o "
Qo) = (A Fi))A Lm) - (10)

i=1
The pseudo scalar product between two 4x4 matrices is
defined as follows
A A B=A[32]*B[32]+A[13]*B[L3] + A[2,1]*B[2,1] +
+A[L4]* B[1,4] + A[2,4]* B[2,4] + A[3,4]* B[3,4]

where Ali, j] and B[i, j] are the elements of position i,j of
matrices A and B. In the case of the eq. (10) it yields:

Qn = U, +CU *eee +fb,

that is, the components of the resulting action é F; onto the

displacement permitted by the joint m described by matrix
L,
For open chain systems the summation in eq. (10) starts from
m instead of 1 because only the action applied to the link
with label greater then m work for an infinitesimal variation

of o,.

It is possible to show that the dynamic equation of the system
can be written in the following matrix form

Mj +C(a,4) =F(t)

where Mis the mass matrix, C a vector holding the weight,
centrifugal and Coriolis effects, F a vector containing the
components on the joint coordinates of the forces and torques
applied to the manipulator (including the actuators actions).
F depend on the time. The elements of the mass matrix
(which is symmetric and positive defined) are given by the
relation

N
. [o]
M i,m] =Trace[Q Li(O)Jh(O)Ltrr(O)]
h=max(i,m)

while the elements of vector C and F are

ey - u i S
Cml=Traceed (Hop - Hg(o))Jh(U)L‘m(U)E- Loy A & F mio)

=m

F[i] = action (force or torque) on i-th joint.

A comparison between this methodology with those presented
in [40] alows a better understanding of the meaning of
coefficient Dy, D, Dy, there presented as the result of
mathematical derivation and whose meaning can be
explained in term of W, H, L and J matrices.

4. OPEN LOOP EXAMPLE.

In order to show the practical use of our methodology, let us
consider the problem of writing the kinematic and dynamic
equations of the STANDFORD ARM, having six degrees of
freedom with five revolute joints and one prismatic, whose
initial position is drawn in fig. 2. The kinematics section
describes how you can write the position matrices, the
relative and absolute velocity and acceleration matrices,
while the dynamics section describes how to write the inertia
matrix and the dynamic equilibrium. We describe the joint

space coordinates by the vector Q =[J,,J,,d5,J4,J5,J e]t.

4.1. KINEMATICS.

In this example the reference frames of the links are placed
according to Denavit and Hartenberg. Then the matrices that
describe the relative position matrices of the links are

G 0 -§; G 0 50
M $ 0-G:i0
ot 01 0 :d,
56T
-§ 10
G, !0

Mas = :
1 0 !4,
CRCRE
-§ 00
C 0:0
Mas = 0 1.0
00l

Zz Zs Zg

X

Fig. 2. The STANDFORD ARM.

where C =cos(J;) and § =sin(J;). The absolute position
matrix of any link of the robot can be evaluated as usua as

Mg =MgiM ;... My
Matrices L in relative frame have the form PL for prismatic
joints and 'L for revolute joints as shown in eq.(1).
Remembering the relation between matrices W, H and L the
relative velocity and acceleration matrices between
contiguous links with revolute pairs, joints i=1,2,4,5,6 in our
example, are

0 -4 o0 4% - 0
G 0 O G -62 0
W qiioy = H H: 7 = | I !
o 0 0ig YT 0 o o)
0 0 0 0 0 o0
and for the prismatic pair, joint 3in Fig 2, are
000!0 000!0
W o ooio ’ o ooio
23270 0 0:¢ 23270 0 0igy
000:!0 0000

where g, is the i-th free coordinate of the joint and ¢, g its
time derivatives.

To obtain the absolute velocity and acceleration matrices of
the links we use the velocity composition rule and the
Coriolis theorem,

Wo i) = Wo,i-100) * Wi-1j0) (11
Hoi = Hoj-10) ¥ 2Wo,j-50Wj- 1j0) * Hj-1j(0)

in which the relative velocity and acceleration matrices are
referred to the absolute frame (0). We can easily calculate
these matrices by means of matrices L

Wi_1i0) =Li-1iG

. .2
Hi-1i) =Li-sigb + L2 1i(0)%

Matrices L can be referred in the absolute frame (0) using the
following relation

Li.vio = Mo,i-lLi-LiMb,li-l .

For link 1 Mg, =[1] (the identity matrix), so the absolute

velocity and acceleration matrices are the same as the relative
ones, Wy) = Wo, and Hoxo = Hoa-

The relative velocity and acceleration matrices between links
1 and 2 can be referred to the absolute frame by the relation

Wi 20 =M 01 Wi oM 51 =L 202
) q

L1,2(o) =Mg,l oM 6,11 =

OO..(/)

0 0
-G-8 ¢
0 0

y 2.2
Hi200) =L 12082 +L120) 2" =

0 0 G -2 - 0

0 o0 0. |-c -5?2 0i0.
- St i+ 1S - S 1942

0 0 0: 0 0 o0}

The evaluation of the velocity and acceleration matrices of
the other links (3, 4, 5 and 6) is executed in the same way. As
a further explanation, let us show matrices
L2V3(o),W2V3(o), Hz,3(0) which are

0 0 0iGS
o oo:ss
L2so =g ¢ o C,
00070

Wi 30) =L 2,30)% H230) =L 2300

The formulafor H, 4 is very simple because the 39 joint is
prismatic and so L 5, reduces to the null matrix.

The absolute velocity and acceleration matrix of the other
links of the manipulator can be easily obtained by using
formulas (11) recursively.

4.2. DYNAMICS.

Remembering the first part of the paper, the inertial action
matrix F; of the link i in absolute frame is found using
the dynamic equilibrium equation, that reads

Fi) =- Skew(Ho;(0)Ji0))

where Hy;) is the absolute accel eration matrix (calculated in
the preceding section), and J;q, is the absolute inertia matrix
which is obtained from the inertia matrix of the link i in the
local frame by the transformation Jj) = MO,iJi(i)MO,it- It is
important to note that the inertia of the link is constant if
evaluated with respect to its local frame but it varies if
expressed in the global reference frame. In other words J;;,
in constant while J;,, depend on the robot motion. Let us

consider the problem of building the inertia matrix of any
link i in the local frame.

b by g § Mg
Iy e :myg

Jin =, L, |
x = | M

M myg e
This matrix can immediately be built knowing the mass m,
the "usual” inertia moments J,, J,, J,, Jyy, Jy,, J,, referred
to the center of mass and the position x,, yg, z, of the center
of mass of thelink.

The weight action matrix F may be evaluated by means
of the gravity acceleration matrix, inertia matrix and the Skew
operator by the formula

Fi(0) = Sken(H g(0)Ji0))-

The total action matrix F,; on each link can be found

starting from the end effector, the only link on which the
external force acts (known), calculating the inertial action

matrix, summing the total action matrix of the successive
link and summing the weight action matrix

Fi=Fi+F i +F

It's very hard to write the dynamic relation of the manipulator
in fig. 2 in symbolic form, so this part is presented only in
numeric form in section 6 which outlines the easy
implementation of the presented formulation.

5. CLOSED LOOP EXAMPLE.

In this section we present an application of the methodology
applied to the closed loop system in fig. 3, writing the
kinematic and dynamic equations. We describe the joint
space coordinate by the vector Q = [al,az,a&a]. Using the
local frame of the fourth link shown in fig. 3 and letting
¢ =cosa;) and § =sin(a;) the relative position matrices
are:

¢ -s 0ihg ¢ -5 011G
Moo= G 0ihs o1 G 0ihs
7o 0 1:0/ |0 0 1:0
0 0 0:1 0 0 0:1

G -5 0f 100;-

s ¢ O 010:0

My, = Pl Mg, = ;
22710 0 1 ¥7loo1:0
0 0 0:1 000;i1

Applying the position equation 4 yields:

cos(a,+a,+a;) -sin(a,+a,+a,) 0§I1cos(a1)+lzcos(al+a2)-
sin(a,+a,+a,) coya,+a,+a,) 0} Ilsn(a,)+lsin(a,+a,)

o o0
0 0 0 1
10 0
o1 0
oo 1
0001

This matrix system is equivalent to

icos(@; +ap +agz) =1
'J}sin(a1+a2 +az)=0
lcostay) +1cos(a; +a,) - a= 0
'Tl'llsin(al) +l,sin(a; +a,) =0
The first and the second equations are equivalent to the
relation
a;+a,+a;=2kp

so that the system is described by 3 independent equations
with 4 unknowns (a,,a,,a5,a), indeed the system has just

one degree of freedom.

For the andlysis of velocity and acceleration of the system we
build the L matricesin local frame:

0 -1 0} 0001

1 0 0} 000!
Loi=Liz=Lys 00 O I-3,0_0 00!

0 0 0l 00 0l

Matrices L can be referred in the absolute frame (0) using the
following relation

Li.1ic =Moj.qki 1iM b,li-l
Appling the equation 7 to this closed loop system we have
Loyo@1*L12o@2 +Losods+Laoa=[0]

from which, remembering that L matrices have six
independent elements, the system Aq=[0] of paragraph 2.2
reduces to

0 0 0
0 0 0 dy

1 1 1 dy
0 lLsin@,) hsin@) +l,sin@, +a.) s
0 -ljcos@a;) -licos@y)- l,cos@; +ay) a

0 0 0

is equivalent to 3 equations with 4 unknowns. Note that the
position system equations outline the geometrica relations
(seefig. 3)

l,sin(a,) +l,sin(a; +a,)=0
l,cos(a,) +1,coqa, +a,)=a
that can be used to simplify matrix A.

The accelerations of the bodies of the mechanism can be
obtained by equations 6 and 3. For the mechanism of fig. 3
we have

Loyo@1 +L1oo@2 +Lasods+Laggd+

4 4 r-1

o . o o ..

a ('—i-l,i(O)CIi)2 +2a A Ls1s0)br-1r0) 88 =[0]
i=1 r=2s=1

and the acceleration equations system, Ag =b becames

Y1

@ “Y5
@ X3
X0=X4
«‘—‘4»777777777777777—’—
al /2
) \\\
/ \\
; al \\\\
4\;,77777777% -—-
\;41\\40,3
<Y

Fig. 3: Sliaer crank mechanism.

0 0 0 t=0; Mg, =[1]; (@)
0 0 0 dy Wo,o =101 Hoo =[0]
1 1 1 a, read robot description
0 lsin@) hsin@p) +l,sin@; +a,) dlas| —7
. i=
0 -ljcosf@;) -ljcos(ay)- l,cosf@; +a,) 0fa ® starts from first link
0 0 0 %) (the nearest to the base)
0 Y _
0 Y ® ¥ read relative motion (position, speed and | (2)
0 o Y acc.) of jointi at timet.
= B Y B
- 2jcos@;)aqd, - 2ad; +ay)ds VNV evaluaterel. position, vel. and acc. |(3,4)
- 2sin(@,)dd, - 2a(@, +d, +ds) Yo Y Aigin Wi Hisy;
0 o —
% Y% evaluate absolute position of link i (5)
where the matrix coefficient is equal to the matrix coefficient LV ANEVA MOy; =MOg A,
of the velocity equations system, and the first time derivatives VY - —
of the free coordinates in the right side are calculated by the X /2 X /2 e WadH bt @ 167
. . 2 2 ’
velocity equations system. v 1 W MO W . MO
i-1i(0) 0,i-1YVi-1i 0,i-1
B Y — -1
6. NUMERICAL APPLICATION. P Hi-10) = M0, 1Hi-1iM 054
_ Yo Y -
The proposed _met_hodology appears to be_ very sw_table for VAEVA evaluate absolute speed of link i 8)
computer applications because the operations required for 1 1 Wo; = Woy1 +Wi_1i0)
coding a program can be defined very easily. For this reason a 1 - —
software library called SPACE_LIB has been realised [21]. A 2 e : __
complete sample program (fig.4) for the direct kinematics Vo e evalliate absolute acceleration of link i | (9)
and the inverse dynamics of any seria manipulator Ve e Hoi = Hoj-1* Hisio) * 2Woi-1Wi-1(0)
highlights the power of the methodology. ¥ - B
14 i=i — i i
The program is presented just with the aim of showing how j =i+l | |y05 1< numtler Or]:o“nk |
2

to use the presented methodology. The simulation programs

can be written using few standard statements as well a few Ya i_: n (10)
callsto standard general purpose functions. ¥ start from the last link, the nearest to the
% end-effector
The program, whose source code consists of less then 100 1 Y= E
lines of listing, is composed of four parts. "
g P B & extern act. on end-effector
The first part is devoted to the declaration of the variables A -
and to the input data phase (kinematic and dynamic Y% %, @ refer inertia matrix to absolute frame (0) |(11)
characteristics of the robot in hand). v 1 Jioy = Mo MY, 4
The second part is the Kinematics part, consisting of a simple B Y B
loop performing the following iterative operations: Yo I evaluate inertia and weight action on link|(12)
- reads the joints motion (step 2), builds relative position ZZ e :
matrices A (step 3) and the relative velocity and 2 Fio =- S(GN[(HOJ - Hg(O))Ji(O)]
acceleration matrices by means L matrix (step 4) VAN VA -
- evaluates the absolute position MO of each link (according o evaluate :?e co_nlsétra n+a$t|on onjointi |(13)
to D.&H. method) using the formula M 0y; = M 0y;_;A;_4; 72 i~ 0 "~ i+X0)
B Y B
step 5
(e 9) Y i=i-1 |alyes i>1 |
- transforms the relative velocity and acceleration matrices % ~ o
from local to the absolute frame (0) (step 6-7) | =ttt |_| |y05 t < tmax |
Wi 1i0) =M 0Op; Wi_iM Ob,li no
| stop |

Hi.tio = Moo,iHi-LiMob,li

- evaluates the absolute speed of each link by summing the

drag and the relative speed of each link (step 8) Fig. 4: Flow chart of a program for the direct kinematics

and inverse dynamics of a serial manipulator. Numbersin
Wi =Woi.1+ Wi g0 parentheses refers to the program list of fig.6.

- evaluates of the absolute acceleration of each link by
means the Coriolis theorem (step 9)

Hoi =Hoj.1 t Hiigi) * 2Woi Wi 1i0)

The third part is the Dynamic analysis, which consists of the
evaluation of the inertial actions applied to each link and of
the joint reactions, simply by summing all the actions applied
to the links which follow the considered joint.

The fourth part is devoted to the output of the calculated
matrices.

Another software library, CHAIN++ [24], has been developed
for writing simulation programs in the C++ language. This
engine defines several mathematical classes that describe the
matrices presented in this paper and operations on them.
Moreover it defines the class LinkObject, that encapsulates
all the matrices needed to define the data structure describing
arigid body and has the methods working on it, and the class
ChainObject a collection of objects LinkObject. In fig. 5 we
present an excerpt of a C++ program, performing the
kinematic loop previoudy described, that outlines the
representation of the matrix operation and the compact code
obtained.

To people not familiar to C++ language we can say that this
language offers the possibility to define new types of
variables and the modalities to operate on them. For example
we have defined a number of special types of 4x4 matrices
and speciad functions to operate on them for standard
operation required by our methodology (e.g. transformations).
More over the meaning of some standard operators like '+' or
*' has been "overridden" to have the possibility of using it
also in matrix operations.

7. NOTESON COMPUTATIONAL COMPLEXITY.

The presented methodology can be easily utilized to write
simulation software. The resulting programs are generally
quite compact if they are written using specialized libraries
like spacelib or chain++. These libraries have been devel oped
taking into account the special properties of each matrix
obtaining a quite efficient code. For example there is a
special function to invert the position matrices developed
taking into accounts it particularities (see part 1, paragraph

ifétreamnotion("data");

whi | e(TRUE)

{// KI NEMATI C LOOP
for(int i=1;i<=nlink;i++)
t /1 Read notion

notion >> g >> gp >> qgpp;
if(nmotion.eof ()) exit(0);

/1 build rel. pos., vel., acc. matrices
Ali].SetUp(jtype[i],thetal[i],s[i],b[i],a[i],
alfali],q);

Wi]. SetUn(jtype[i],ap);
Hi].SetUp(jtype[i],ap,app);

/1 evaluate abs. position matrix

M[i] = M[i-1]*Ali];

/1 evaluate rel. vel. and acc. matrices in (0)
W[i] = Wi].ChangeRef (M[i-1]);

HO[i] = Hi].ChangeRef (M[i-1]);

/1 evaluate abs. vel. matrix
WAL = WALi -1] + WO[i];
/1 evaluate abs. acc. matrix (Coriolis' theoremn)
HALI] = HA[i-1] + HO[i] + 2*WA[i-1]*WO[i];
}

/1 DYNAM C LOCP

Fig. 5: C++ language example of kinematic loop.

2.2).

Although a precise determination of the computational
complexity has not been performed we guess that an average
programmer can write programs whose computationa
complexity is close to the minimum. However as the
presented examples suggest the time necessary to write the
programs is quite short.

8. CONCLUSIONS.

The presented applications of the matrix approach show how
it can be easily adopted to write the kinematics and dynamics
equation of achain of rigid bodies.

For simple mechanisms the equation can be directly
developed analytically while for more complicated chains of
rigid bodies they can be easily transated into application
programs. With the use of a standard library (such as
SPACELIB or CHAIN++) performing the basic matrix
operation required by our notation, these application
programs are very short and assume very simple forms.

In summary, the presented methodology is a convenient tool
both for analytical and numerical analysis of the system of
rigid bodies.

9. APPENDIX.
9.1. DERIVATIVESOF M ™! WITH RESPECT TO TIME.

The time derivatives of the invers of a position matrix can be
found by deriving with respect to time the equation

MM 1=[1]

which becomes dd—'\t/lM'1 +M

-1
am =[0] and so
dt

_dM-l :_I\/I'ld_'vll\/r:l
dt dt

9.2. DERIVATIVESOF L, WITH RESPECT TO TIME.

Starting from the transformation of the reference of matrix
Litoy =Mg;.1LiMgi 1, and differentiating respect to time t

Weha\/eﬂzﬁLiMb}_l_}_MO'i_lLi O,I-li
dt dt dt
dM,; dm
but (:I-l = Wo,.1My;.,and dot'l L= Mgj.Wo,.1 SO

ite 250 =W Lo - LigW
WecanW”teT— 0,i-1~i(0) = ~i(0)VVo,i-1-

10. REFERENCES.

All the references are quoted at the end of part 1 of the paper.

/* programfor direct kinematics and inverse dynam cs of ANY serial robot v.2 for(t=0;;t+=dt) /* for each instant of time */

Devel oped on M5-DOS operative systemwith Mcrosoft C conpiler V. 5.10 */ {

/* * k ok kK Kl '\E'\MT'(:S * kk kK */

#i ncl ude <stdio. h> for (i=1;i<=nlink;i++) /* for each link */

#i ncl ude <mat h. h> { ierr=fscanf(notion,"% % %", &q, &p, &Ipp); /* read notions (2) */

#i ncl ude "spacelib. h" if (ierr!=3) goto end_notion; /* end of data in file MOTION */

/* build relative position matrix (3) */
mai n(int argc, char *argv[]) dhton(jtype[i],theta[i],s[i],b[i],a[i],alfa[i],q, Ali]);

{ vel acct oWH(j type[i],qp,app, Wil,.Hil); /* build relative velocity
#define MAXLI NK 10 /* max nunber of links */ and acceleration matrix in local frame (4) */
int nlink,jtype[MAXLI NK] ; /* n.links; joint type */
float thetal MAXLI NK], s[MAXLI NK] ; /* Extended D.&H paraneters */ mol t4(MD[i-1], Ali],M[i]); /* eval uate absolute position matrix (5) */
float b[MAXLI NK], a[MAXLI NK], al f a[MAXLI NK] ;
float mjxx,jxy,jxz,jyy,jiyz, jzz, xg,Yy0, zg; /* dynam cs paraneters */ trasf_mam (Wi], M[i-1],W[i]); /* transformrelative velocity matrix
float g,qp,gpp; /* joint variables */ fromlocal frane to base frame (6) */
float gx, gy, gz; /* gravity acceleration */ trasf_mam (Hi], M[i-1],H0[i]); /* transformrelative acceleration matrix
float fx,fy,fz, cx,cy,cz; /* external forces and torques on end-effector */ from local frame to base frane (7) */
FI LE *dat a; /* file including robot parametres */ sumd(WALi -1], W[i],WA[i]); /* evaluate absolute velocity matrix (8) */
FI LE *noti on; /* file including actuator notions */ /* eval uate absol ute acceleration matrix (9) */
int i; /* counter */ coriolis(HA[i-1],HO[i], WA[i-1],W[i],HA[i]);
int ierr; /* error code */ }
float t,dt; [* xxxkxx DYNAM CS ***** *x/
if(argc!=3) exit(1); /* check of input data */ /* initializations (10) */
dat a=f open(argv[1],"r"); i f(data==0) exit(2); /* read external actions on end-effector */
noti on=fopen(argv[2],"r"); if(notion==0) exit(3); fscanf(data,"% 9% % 9% % %", & x, &y, & z, &cx, &cy, &cz);

/* define 4x4 matrices */ acton(fx,fy,fz, cx,cy,cz, EXT); /* build external action matrix */
MAT4 Al MAXLI NK], MD[MAXLI NK] ; trasf_mant 4(EXT, M[nl i nk], ACTO[nl i nk+1]) ; /* transforns external actions
MAT4 W MAXLI NK], W[MAXLI NK], WA[MAXLI NK] ; fromlocal to base frame */
MAT4 H MAXLI NK], HO[MAXLI NK], HA[MAXLI NK] ; for(i=nlink;i>0;i--) /* for each link */
MAT4 J[MAXLI NK], JO[MAXLI NK] ; { trasf_mant4(J[i],M[i],J0[i]); /* transforminertia matrix
MAT4 FI [MAXLI NK] , ACTO[MAXLI NK+1], EXT, Hg, H; fromlocal to base frame (11) */
MAT4 TMP; /* tenporary matrix */ rmol t4(HAI], -1., TMP) ; /* change sign to find inertia action */
/* step (1) */ sund(TMP, Hg, Ht) ; /* evaluate total acceleration matrix */
i dmat 4(MD[0]); cleard(WA[0]); clear4(HA[O]); /* INITIALI ZATI ON of matrices */ skewd(H, JO[i], FI[i]); /* evaluate the action matrix
due to inertia and weight (12) */
/* READ ROBOT DESCRI PTION */ sumd(FI[i], ACTO[i +1], ACTO[i]); /* evaluate total action matrix (13) */
}
fscanf (data, " %", &l i nk); /* n. of links */ [xxxxk QUTPUT RESULTS ***** */)
for (i=1;i<=nlink;i++) /* for each link */ for(i=1;i<=nlink;i++) /* for each link */
{ fscanf(data, "% % % % % %", /* D.&H. paraneters */ { printf("\n\n Link %l \n\n",i);
& type[i],&hetali],&s[i],&[i],&a[i], &alfa[i]); printmd("rel. pos. matrix", Ali]);
fscanf(data, "% 9% % % % % %", /* dynanic data */ printmd("abs. pos. matrix",M[i]);)
&m & xx, & xy, & xz, & yy, & yz, & zz) ; printmd("rel. vel. matrix in frane (|)",W|]);
fscanf(data, "% 9% %", &xg, &g, &zQ); printmd("rel. vel. matrix in frame'(O)",W)[l]);)
jtod(mijxx,jyy,jzz,jxy,jyz, jxz, xg,vyg,zg,3[i]); /* build inertia matrix */ printmi("absolute velocity matrix in frame (0)",WA[i]);
1 printmd("rel. acc. matrix in frame (i)",Hil);
fscanf(data, "% % %", &gx, &gy, &9z) ; /* read gravity acceleration vector */ printmd("rel. acc. matrix in frane (0)",HO[i]);)
gton(gx, gy, 9z, Hg) ; /* build gravity acceleration matrix */ printmd("absol ute acceleration matrix in frame (0)",HA[i]);
printmd("inertia matrix in frane (i)",J[i]);
printmd("inertia matrix in frame (0)",J0[i]);
printmd("total actions",FI[i]);
printmd("action on joint i",ACTO[i]);
}
}
end_notion: exit(0);} /* end main */

Fig. 6: C language program for the direct kinematic and inverse dynamic analysis of ANY serial manipulator. Numbersin parenteses refer to the flow chart of Fig. 4

/* program for direct kinematics and inverse dynam cs of ANY serial

with Mcrosoft C conpiler V. 5.10 */

robot v.2 Devel oped on M5-DCS operative system

#i ncl ude <stdio. h>
#i ncl ude <mat h. h>
#i ncl ude "spacelib. h"
mai n(int argc, char *argv[])
{
#define MAXLI NK 10 /* max nunber of |inks */
int nlink,jtype[MAXLI NK] ; /* n.links; joint type */
float thetal MAXLI NK], s[MAXLI NK] ; /* Extended D.&H paranmeters */
float b[MAXLI NK], a[MAXLI NK] , al fa[MAXLI NK] ;
float mjxx,jxy,jxz,jyy,jyz,jzz, xg,yg, zg; /* dynam cs paraneters */
float g,qp,qpp; /* joint variables */
float gx, gy, gz; /* gravity accel eration */
float fx,fy,fz, cx,cy,cz; /* external forces and torques on end-effector */
FI LE *dat a; /* file including robot paranetres */
FILE *noti on; /* file including actuator notions */
int i; /* counter */
int ierr; /* error code */
float t,dt;
if(argc!=3) exit(1); /* check of input data */
dat a=f open(argv[1],"r"); i f(data==0) exit(2);
noti on=fopen(argv[2],"r"); if(notion==0) exit(3);
/* define 4x4 matrices */
MAT4 Al MAXLI NK], MD[MAXLI NK] ;
MAT4 W MAXLI NK], WO[MAXLI NK], WAl MAXLI NK] ;
MAT4 H MAXLI NK], HO[MAXLI NK], HA[MAXLI NK] ;
MAT4 J[MAXLI NK], JO[MAXLI NK] ;
MAT4 FI [MAXLI NK] , ACTO[MAXLI NK+1] , EXT, Hg, Ht;
MAT4 TMP; /* tenporary matrix */
/* step (1) */
i dmat 4(MD[0]); clear4(WA0]); clear4(HAO]); /* I NI TI ALl ZATI ON of matrices */
/* READ ROBOT DESCRI PTION */
fscanf(data,"%", &l ink); /* n. of links */
for (i=1;i<=nlink;i++) /* for each link */
{ fscanf(data,"% % % % % %", /* D.&H paraneters */
& type[i], &heta[i], &s[l] &b[l] &a[i], &l fali]);
fscanf(data,"% % % % % % /* dynam c data */
&m & xx, & xy, & xz, & yy, &JyZ &JZZ)
fscanf(data,"% % %", &g, &g, &Q);
jtod(mjxx,jyy,jzz,jxy,jyz,jxz,xg,y9,29,J[i]); /* build inertia matrix */
fscanf(data,"% % %", &x, &gy, &9z); /* read gravity accel eration vector */
gton(gx, gy, gz, Hg) ; /* build gravity acceleration matrix */
for(t=0;;t+=dt) /* for each instant of tinme */
{ /* * k% k k Kl ’\EWT'& * k% kK */
for (i=1;i<=nlink;i++) /* for each link */
{ ierr=fscanf(notion,"% % %", &q, &qp, &gpp); /* read nmotions (2) */
if (ierr!=3) goto end_notion; /* end of data in file MOTION */

/* build relative position matrix (3) */
dhton(jtype[i],theta[i],s[i],b[i],a[i],alfa[i],q,Ali]);

vel acct oWH(j type[i], ap, qpp, Wi],Hil); /* build relative velocity

and acceleration matrix in local frame (4) */

mol t4(M[i-1],Ali],M[i]); /* eval uate absolute position matrix (5) */

trasf_mam (Wi],M[i-1],W[i]); /* transformrelative velocity matrix

fromlocal frame to base frane (6) */

trasf_mam (Hi],M[i-1],H0[i]); /* transformrel ative accel eration matrix
from local frane to base frame (7) */

sund(WA[i-1],Wo[i],WA[i]); /* evaluate absolute velocity matrix (8) */

/* eval uate absol ute accel eration matrix (9) */
coriolis(HA[i-1],HO[i],WAi-1],W[i],HA[i]);
/* * k% k k DYMM& * k% kK */
/* initializations (10) */
/* read external actions on end-effector */

fscanf(data,"% % % % % %", & x, &y, & z, &cx, &y, &cz);

acton(fx, fy, fz, cx, cy, cz, EXT);

trasf_mant 4(EXT, M[nl i nk], ACTO[nl i nk+1]) ;

for(i=nlink;i>0;i--)

{ trasf_mant4(J[i],M[i],J0[i]);
rmol t4(HA[I],-1., TMP);
sumd(TMP, Hg, Ht) ;
skewd(H, JO[i],FI[i]);

sumd(FI[i], ACTO[i +1], ACTO[i]);
}

for(i=1;i<=nlink;i++)

{ printf("\n\n Link % \n\n",i);
printmd("rel. pos. matrix",Ali]);
printmd("abs. pos. matrix",M[i]);
printmd("rel. vel. matrix in frame (i)", Wi
printmd("rel. vel. matrix in frame (0)",W[i
printmd("absolute velocity matrix in franme
printmd("rel. acc. matrix in frame (i)",Hi

/* build external action matrix */

/* transforns external actions
fromlocal to base frame */

/* for each link */

/* transforminertia matrix

fromlocal to base frane (11) */

/* change sign to find inertia action */
/* evaluate total acceleration matrix */
/* evaluate the action matrix

due to inertia and weight (12) */

/* evaluate total action matrix (13) */

/* * k% kK wTPUT ESU_TS * k% kK */
/* for each link */

printmd("rel. acc. matrix in frame (0)",HO[i]);
printmd("absol ute acceleration matrix in frame (0)",HAli]);
printmd("inertia matrix in frane (i)",J[i]);
printmd("inertia matrix in franme (0)",J0[i]);
printmd("total actions",FI[i]);
printmd("action on joint i",ACTO[i]);
}
}

end_notion: exit(0);} /* end main */

11

